

Chemistry SUB. CODE- BSCC2402

For B.Sc. 4th Semester

(Heterocycles) Module-IV

Synthesis of isoquinolines

By

Dr. Rosy Mallik Assistant Professor, CENTURION UNIVERSITY OF TECHNOLOGY AND MANAGEMENT, ODISHA

Synthesis of isoquinolines

Bischler-Napieralski

The Bischler-Napieralski reaction involves the cyclization of phenethyl amides in the presence of dehydrating agents such as P_2O_5 or $POCI_3$ to afford 3,4-dihydroisoquinoline products.

Mechanism

Early mechanistic proposals regarding the Bischler-Napieralski reaction involved protonation of the amide oxygen by traces of acid present in P_2O_5 or $POCl_3$ followed by electrophilic aromatic substitution to provide intermediate **B**, which upon dehydration would afford the observed product **C**.

However, this proposed mechanism fails to account for the formation of several side products that are observed under these conditions.

Mechanism:1

Mechanism

Mechanism: 2

This reaction is one of the most commonly employed and versatile methods for the synthesis of the isoquinoline ring system, which is found in a large number of alkaloid natural products.

The Bischler-Napieralski reaction is also frequently used for the conversion of N-acyl tryptamine derivatives into pcarbolines.

Pictet-Spengler reaction

This reaction involves the condensation of a Parylethyl amine **1** with an aldehyde, ketone, or 1,2dicarbonyl compound **2** to give the corresponding tetrahydroisoquinoline **3**.

These reactions are generally catalyzed by protic or Lewis acids, although numerous thermally-mediated examples are found in the literature.

Aromatic compounds containing electron-donating substituents are the most reactive substrates for this reaction.

R = H, hydroxy, alkoxy, alkyl

R1, R2 = H, alkyl, Ar, carbonyl

Pomeranz-Fritsch Synthesis

Under acidic conditions, imine **A** is protonated to give the iminium ion **B** which undergoes an electrophilic aromatic substitution reaction to form the new carbon-carbon bond. Rapid loss of a proton and concomitant re-aromatization gives the tetrahydroisoquinoline **C**.

References

- 1. K.D Sharma and Y. R. Sharma, Kalyani Publishers, Unit-III page-278;
- 2. University Chemistry, Vol-IV, Dr. U. N. Dash, Dr. K. K. Ojha, Himalaya Publishing house, Unit IV, page-379