

Lipid Metabolism

Oxidation of Fatty Acids

- Fatty acids undergo oxidative degradation known as α, β, and omega pathways
- Q oxidation is found in brain tissue of animals and plants and results in removal of one carbon at a time from carboxyl end of the fatty acid
- Involved in the degradation of long chain fatty acids and is the main source of odd carbon fatty acids (C13 to C18)

Oxidation of fatty acids

- Omega oxidation is a minor pathway brought about by hydroxylase enzymes involving cytochrome P-450 in the endoplasmic reticulum
- Fatty acids occur as constituents of cutin and suberin
- β oxidation takes place in mitochondria and fatty acids are activated before entering into oxidation
- Activation of fatty acids
 - FA's are converted into active intermediate in a reaction involving ATP and coenzyme A

- Thioester linkage between carboxyl group of fatty acid and sulfhydryl group of coenzyme A is formed with hydrolysis of ATP
- Reaction takes place on the outer mitochondrial membrane catalysed by acyl CoA synthetase

Penetration of fatty acids into mitochondria

- Long chain acyl CoA molecules are carried across the mitochondrial membrane by conjugating with carnitine - (a zwitterionic compound formed from lysine) acylcarnitines
- Lower fatty acids oxidation occur within mitochondria without carnitine

- Acyl CoA combines with carnitine in the presence of carnitine acyltransferase I
- Acylcarnitine is transported coupled with transport out of one molecule of carnitine
- Acylcarnitine reacts with coenzyme A catalysed by carnitine palmitoyl transferase II located inside of the inner membrane
- Acyl CoA is reformed in mitochondrial matrix with liberation of carnitine

- Oxidation 2 carbons are cleaved at a time from acyl CoA starting from carboxyl end
 - Chain is broken between α and β carbon atoms
 - 2 carbon units of Acetyl coA is formed
 - Formation of α, β-unsaturated acyl CoA in presence of acyl CoA dehydrogenase and the coenzyme FAD
 - Hydration of double bond between C-2 and C-3 by enoyl CoA hydratase forming β-hydroxy acyl CoA
 - β-hydroxy acyl CoA is dehydrogenated in the presence of β-hydroxy acyl CoA dehydrogenase and NAD+ forming β-ketoacyl CoA

- β-ketoacyl CoA reacts with coenzyme A in presence of enzyme thiolase
- Products are acetyl CoA and acyl CoA containing
 2 carbons less than original acyl CoA molecule
- Acetyl CoA formed is oxidised to carbondioxide and water by citric acid cycle
- Oxidation of MUFA's
 - Follows same reactions as that of SFA's with additional two enzymes isomerase and reductase

Oxidation of MUFA'S

- Oxidation of C-16 unsaturated palmitoleic acid having a single bond between c-9 and 10
- PA is activated and transported across mitochondrial membrane
- Undergoes 3 cycles of degradation, the cis decenoyl CoA formed does not serve as substrate
- Isomerase converts cis double bond into trans shifting the position of double bond between C-2&3
- The trans decenoyl CoA serves as substrate

Oxidation of PUFA's

- The cis c-3 bond formed after three rounds of β oxidation is converted into trans double bond by isomerase followed by β oxidation
- The acyl CoA produced contains C-4 double bond that undergoes dehydrogenation by acyl CoA dehydrogenase yielding trans C-2 and cis C-4 dienoyl intermediate
- Intermediate is converted to trans C-3 enoyl CoA and further to trans C-2 form that undergoes complete oxidation

Biosynthesis of Fatty Acids

Centurion UNIVERSITY

Shaping Lives... Empowering Communities...

- Synthesis occurs in cytosol, and intermediates are covalently linked to sulfhydryl group of acyl carrier protein (ACP)
- Enzymes involved in synthesis in animals are joined in a single polypeptide chain called fatty acid synthase and the reductant is NADPH

Steps in biosynthesis

- Acetyl CoA is catalyzed by acetyl CoA carboxylase having biotin as prosthetic group to malonyl CoA
- Formation of malonyl CoA is the initial and controlling step in FA synthesis (bicarbonate serves as source of CO₂)

Centurion UNIVERSITY Shaping Lives... Empowering Communities...

Steps in Biosynthesis of Fatty Acids

- Formation of Malonyl CoA occurs in two steps, carboxylation of biotin involving ATP and transfer of carboxyl group to acetyl CoA
 - Bicarbonate + acetyl CoA.....>malonyl CoA
- Acetyl CoA carboxylase plays a key role in regulating fatty acid metabolism
- Acetyl transacylase (can transfer acetyl and acyl groups) and malonyl transacylase (very specific) enzymes catalyse the formation of acetyl ACP and malonyl ACP

Steps in Biosynthesis of Fatty Acidsc

UNIVERSITY Shaping Lives... Empowering Communities...

Centurion

- Acetyl CoA + ACP.....>acetyl-ACP + COASH
- Malonyl CoA + ACP.....>malonyl-ACP + COASH
- Acetyl ACP condenses with malonyl ACP to form acetoacetyl ACP with elimination of CO₂
- The β-keto group in acetoacetyl group is reduced by NADPH dependent β-ketoacyl reductase to β-hydroxyl acyl ACP
- β -hydroxyl group combines with hydrogen atom attached to y carbon and a water molecule is removed to form α , β -unsaturated acyl ACP

Centurion UNIVERSITY Shaping Lives... Empowering Communities...

Steps in Biosynthesis of Fatty Acids

- Unsaturated Acyl ACP is converted to saturated acyl ACP by α, β-unsaturated acyl ACP reductase using NADPH as coenzyme
- The end product contains 2 atoms more and addition of subsequent acetyl units through malonyl ACP leads to formation of palmitate

Acetyl CoA + 7malonyl CoA + 14 NADPH + 20 H ⁺ ...>palmitate + 7Co2 + 14 NADP⁺ + 8CoASH + 6H2O

Steps in Biosynthesis of Fatty Acids

- Synthesis of malonyl CoA
- 7acetyl CoA +7Co2 + 7ATP> 7 malonyl CoA + 7ADP + 7Pi +14H⁺

Overall equation for synthesis of palmitate

8 Acetyl CoA + 7ATP +14NADPH +6H⁺>

14NADP +8CoASH +6H₂O +7ADP +7pi

Synthesis and degradation are not simultaneously active

Centurion UNIVERSITY Shaping Lives...

Shaping Lives... Empowering Communities...

Elongation or synthesis of long chain fatty acids

- Major product of fatty acid biosynthesis is 16 carbon palmitate
- Chain elongation reactions occur in mitochondria and microsomes (small membrane enclosed vesicles derived from ER)
- Microsomal system is significant as it provides long chain fatty acids (18-24C) required for myelination of nerve cells in animal system
- Elongation system adds 2 carbons to palmitoyl CoA to make steroyl CoA

<u>Synthesis of Unsaturated</u> <u>FA's</u>

- Palmitate and stearate serve as precursors for palmitoleate (16:1), and oleate (18:1) respectively
- Double bond is introduced into fatty acid chain by an oxidative reaction catalysed by fatty acyl-CoA desaturase which is NADPH dependent enzyme
- Desaturase oxidises phosphotidylcholine bound oleate to produce PUFA's
- Linoleic and linolenic are not synthesized by mammals but synthesized by plants
- After ingestion linoleate are converted to γlinoleate, arachidonic acid in animals

Synthesis of Triacylglycerol

University Stoping I As. China ation of glycerol

enturion

- Glycerol kinase catalyses the activation of glycerol to glycerol-3-phosphate
- If GK is in low quantity, G3P is formed from DHAP
- Dihydroxyacetone phosphate is converted to glycerol-3phosphate catalyzed by glycerol-3-phosphate dehydrogenase with formation of NAD+

Activation of Fatty Acids

FA's are activated to acyl CoA by acylCoA synthetase utilizing ATP and CoASH

Centurion UNIVERSITY

Activation of FA's

Shaping Li es. Molecules of Acyl CoA combine with

- glycerol-3-phosphate to form 1,2-diacylglycerol phosphate
- Phosphate group is removed by phosphatidate phosphotase to form 1,2-diacyl glycerol
- Esterification of one or more molecule of acyl CoA with diacylglycerol results in formation of triacylglycerol
- The alternate pathway involves reduction of DHAP by NADPH, acylated and converted to lysophosphatidate (accounts for less than 10%)

Peroxidation

- Lipid peroxidation is described as a process under which oxidants such as free radicals attack lipids containing double bonds (PUFA's)
- Overall process consists of three steps: initiation, propagation, and termination
- Initiation peroxidants like hydroxyl radical abstracts hydrogen forming lipid radical (L*)
- Propagation lipid radical reacts with oxygen to form lipid peroxy radical (LOO*) removing hydrogen from another lipid molecule generating L* and lipid hydroperoxide (LOOH)

Lipid Peroxidation

- Termination antioxidants like vitamin E donate a hydrogen atom to LOO* forming a corresponding vitamin E radical
- Vitamin E radical reacts with another LOO* forming nonradical products
- Primary products of peroxidation are LOOH
- Secondary products formed include malondialdehyde (MDA), propanal, hexanal, and 4-hydroxynonenal (4-HNE)

Lipid Peroxidation

