

Drainage Engineering (BTAI3103)

Module 2 Drainage for Salt Control (Lecture-04: Salt problem in Soil and Water_2)

DEPARTMENT OF AGRICULTURAL ENGINEERING, SOABE CENTURION UNIVERSITY OF TECHNOLOGY AND MANAGEMENT PARALAKHEMUNDI, ODISHA

Salinity Stress Coefficient

Increase in soil salinity decreases water uptake, thus, decreases yield.

- From figure, when EC_e exceeds 7.7, the yield begins to decrease.
- ✓ Crops that are classified as sensitive, moderately sensitive, moderately tolerant, and tolerant to salinity have no reduction in yield at EC_e is 1.0, 3.0, 6.0, and 9.5 dS/m.

Salinity Stress Coefficient

- Vegetable crops are generally sensitive to moderately sensitive to salinity.
- Field crops such as cotton, wheat and barley tend to be less sensitive to salinity.
- ✓ The NRCS classifies irrigation salinity levels as no restriction on use(EC_{iw} < 0.7), slight to moderate restriction (0.7 < EC_{iw}
 < 3.0), and severe restriction (3.0 < EC_{iw}).

Salinity Stress Coefficient

The salinity stress coefficient is equal to 1 if $EC_e < EC_{et}$, otherwise

$$K_{s-salt} = 1 - \frac{b}{100 \times K_y} (EC_e - EC_{et})$$

Where b is the slope of EC_e /yield line, %/(dS/m); EC_{et} is the threshold saturated paste extract EC_e With no yield decrease, dS/m; K_{s-salt} is the salinity stress coefficient, varies from 0 to 1; K_y is the crop sensitive to water stress

Water Stress Coefficient

As with salinity stress, the water stress coefficient is generally calculated under the assumption that yield decreases linearly with increased percent water depletion.

The threshold percent depletion, θ_t , is the water content at which yield starts to decrease.

✓ Thus, Ks-water decreases linearly from 1 at θ_t to 0 at θ_{pwp}

$$K_{s-water} = \frac{\theta - \theta_{pwp}}{\theta_t - \theta_{pwp}} \qquad \qquad \theta_t = \theta_{FC} - \left(\frac{p}{100}\right) \left(\theta_{FC} - \theta_{pwp}\right)$$

p is the point at which yield decreases in contrast to MAD, which may be equal to p or less than p

Water and Salt Stress Coefficient

Combined salt and water stress coefficient

 $K_s = K_{s-salt} \times K_{s-water}$

The relationship between yield decrease and combined stress is:

$$1 - \left(\frac{Y_a}{Y_{max}}\right) = K_y(1 - K_s)$$

Where K_y is the crop sensitivity to water stress, Y_a is the actual yield, kg/ha; Y_{max} is the maximum potential yield, kg/ha.

K_s versus water content curve

Water and Salt Stress Coefficient

Equation,
$$1 - \left(\frac{Y_a}{Y_{max}}\right) = K_y(1 - K_s)$$

Can be rearranged to solve for actual yield:

$$Y_a = \left(1 - K_y(1 - K_s)\right) Y_{max}$$

Crop	Ky	Crop	Ky
Alfalfa	1.1	Potato	1.1
Banana	1.2-1.35	Safflower	0.8
Beans	1.15	Sorghum	0.9
Cabbage	0.95	Soybean	0.85
Citrus	1.1-1.3	Spring Wheat	1.15
Cotton	0.85	Sugarbeet	1.0
Grape	0.85	Sugarcane	1.2
Groundnet	0.70	Sunflower	0.95
Maize	1.25	Tomato	1.05
Onion	1.1	Watermelon	1.1
Peas 🗣	1.15	Winter wheat	1.05
Pepper	1.1		

Table: Crop sensitivity to water stress, K_v

Example

Calculate actual yield for cotton for a growing season if average salinity during the growing season is 10.4 dS/m, and average water content is 14%, $\theta_{FC} = 20\%$, $\theta_{pwp} = 10\%$. $K_y=0.85$. Max yield=1285 kg/ha, MAD=50\%. Threshold $EC_{et} = 7.7$ dS/m and b=5.2.

Solution:

$$\theta_t = \theta_{FC} - \left(\frac{MAD}{100}\right) \left(\theta_{FC} - \theta_{pwp}\right)$$
$$= 20 - \left(\frac{0.5}{100}\right) (20 - 10) = 15\%$$

$$K_{s-water} = \frac{\theta - \theta_{pwp}}{\theta_t - \theta_{pwp}} = \frac{0.14 - 0.10}{0.15 - 0.10} = 0.8$$

$$K_{s-salt} = 1 - \frac{b}{100 \times K_y} (EC_e - EC_{et})$$

$$= 1 - \frac{5.2}{100 \times 0.85} (10.4 - 7.7)$$

= 0.83

$$K_s = K_{s-salt} \times K_{s-water}$$
$$= 0.83 \times 0.80 = 0.67$$

Actual yield $Y_a = (1 - K_y(1 - K_s))Y_{max}$ = (1 - 0.85(1 - 0.67))1285 = 924 kg/ha

Example

Calculate the yield reduction for sugar beets. Assume 80 cm is applied and 100 cm is required. Y_{max} = 40 t/ha.

Solution:

From Table, K_v for sugar beet is 1.0.

The yield based on the FAO, K_v slope is calculated as follows:

$$Y_a = \left(1 - K_y(1 - K_s)\right) Y_{max}$$

$$= \left(1 - K_{y}\left(1 - \frac{ET_{c,adj}}{ET_{c}}\right)\right)Y_{max}$$

$$= \left(1 - 1.0\left(1 - \frac{80}{100}\right)\right) 40 = 32 t/ha$$

Salt Balance at Farm Level

Salt inflow – salt outflow = Change in salt content $\left[\rho_w (V_i C_i + V_r C_r + V_g C_g) + M_s + M_a\right]$ $- \left[\rho_w (V_d C_d + V_{sd} C_{sd} + V_{pw} V_{pw}) + M_p\right] = \Delta M_{sw}$

 ρ_w = density of water, 1000 mg/L

 V_i , V_r , V_g =volume of water added to the same volume of soil by irrigation, rainfall and upward flux (capillary rise), respectively, L. C_i , C_r , C_g =concentration of salt in irrigation water, rainwater and groundwater, respectively, mg/L

 V_d, V_{sd}, V_{pw} =Volume of water removed by deep drainage, surface drainage and plant uptake, respectively, L

 C_d , C_{sd} , C_{pw} = concentration of salt in deep drainage, surface drainage and plant uptake, respectively, mg/L

M_s=mass of salts dissolved from soil mineral of a specified soil volume, mg

 M_a =mass of salts from agricultural inputs, mg M_p =mass of salts precipitated (turned into solid), mg ΔM_{sw} = change in mass of salt in the soil's liquid phase

Steady-state salt model (Hillel, 1998):

Assumption

Salinity concentration during the season and the year is constant ($\Delta M_{sw} = 0$) In-situ precipitation (liquid to solid) and dissolution (solid to liquid) of salt is negligible ($M_s=0$; $M_p=0$; $M_a=0$)

Crops remove a negligible amount of salt (M_c=0)

$$(V_iC_i + V_rC_r) = (V_d - V_g)C_d$$

In C_{in} is the average weighted salinity of the precipitation and irrigation water, and V_g is negligible, then

 $V_{in}C_{in} = V_{out}C_{out}$ or $d_{in}C_{in} = d_{out}C_{out}$ by replacing water volume with water depth, d

