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De~ nitions

Dee= nition 1.1 Complex numbers are des ned as ordered pairs (r, y)
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Points on a complex plane. Real axis, imaginary axis, purely imaginary numbers. Real

and imaginary parts of complex number. Equality of two complex numbers.

De= nition 1.2 The sum and product of two complex numbers are de= ned as follows:
(x1, ) + T2, m) = |(T1 4+ xT2,41 + 22)

[Ty, ) (T2, ) = (Tixa — piyz iy + rain)

In the rest of the chapter use z, 21, 2z, .. . for complex numbers and r, i for real numbers.

introduce i and z = r 4 iy notation,

Algebraic Properties

1. Commutativity

2. Associativity

(zy + 22)+ 23 = 21 4+ (22 + 23), (

3. Distributive Law

Zlzy + 20 =

4. Additive and Multiplicative Indentity

&)
—
I
5 ]

z4+0=2z

5. Additive and Multiplicative Inverse

—z = (=, —y]

iy a - i
z7 = ( - - — Y ) z#0
e 4 y* T 4y




6. Subtractuon and Division

Z1 — Z3 =1 | —Z2z) ey ) Zey
7. Modulus or Absolute Value
|C| -.h_.-":_r"! o
8. Conjugates and properties
P - — T = x—iy=|lx. —y)
Coenturion — I o
| ) L &g = &) I Za
LUNIVERSITY ——
ZlLa = 22
9.
|z|” = =2F
Rez = T.]I]I: = T
10. Triangle Inequality
|21 + 22| < |21] + |22]
Polar Coordinates and Euler Formula
1. Polar Form: for z # 0,
z=vr(cosf® + isinf)
where r = |z|and tan# = y/x. # is called the argument of z. Since # + 2n is also

an argument of =z the principle value of argument of z i1s take such that —7 < # <
m. For =z = Othe arg = is unde= ned.

2. Euler formula: Symbollically,
e'? = (cos @ + isind)
3.
Z) Zo = 1 -";3!-'.':”1 g )
= "'_1{_.'|r.ll_r.12|
2y T
2" = rme™

4. de Moivre’s Formula

icosB + isin®)" = cosnf + isin nd



Roots of Complex Numbers

Let z = re'” then

# 2kw
—)
I I

There are only ndistinct roots which can be given by & = 0.1,... ., n—1.1ff1s a
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principle value of arg = then # /n is called the principle root.

: 1/ 3

1
R Example 1.1 The three possible roots rul"({—-‘l-) (ei*/4)"' " are ¢i*/12 gi®/12+i2x
Regions in Complex Plane

1. ¢ — nbd of z; 1s de+ ned as a set of all points = which satisfy

|2 — 20| < €
2. Deleted nbd of z; 1s a nbd of z; excluding point z.
3. Interior Point, Exterior Point, Boundary Point, Open set and closed set.

4. Domain, Region, Bounded sets, Limit Points.




A function [ is de* ned in a deleted nbd of z,.

Des nition 3.1 The limit of the function f (z) as : — zgis a number wy if, for any
L ontu ]'i 0T given ¢ > 0 there exists a & > 0 such that

UNIVERSITY |2 — 20| < &= |f(2) —wol <e.

L L Example 3.1 f(z) = 52.S5how that lim, _,._  f(2) = 5zg.
Example 3.2 f(z) = 2°. Show that lim. _,., f (2) = z3.
Example 3.3 f(z) = z/%. Show that the limit of f does not exist as z — (.

Theorem 3.1 Ler f(z2) = u(x.y) + iv(r. y) and wy = ug + ivg. lim f(2) = wy if

and only if lim u = ug and lim v = vg.
r.N # | Xo.N Ir. N 4 F: u
Example 3.4 f(z) =sinz. Show that the lim . _,_ f(z) = sin 2

Example 3.5 f(z) = 2r + iy”". Show that the lim. o; f (z) = 4i.

Theorem 3.2 If lim f(z) =wgand lim F(z) =Wy,

lim [f(z)+ F(z)] = wo+ Wy
lim f(z)F(z) = weWo:
lim f(z) [F(z) = % Wa = 0.

This theorem immediaiely makes available the entire machinery and tools used for real
analysis to be applied to complex analysis. The rules for » nding limits then can be listed

as follows:
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Continuity

Derivative

1. lim ¢c=¢c.

2, lim 2™ =27.
I —+Ipn

3. lim P(z2)= P(zn)if Pisapolynomial in 2.
I=+Iq

4. lim exp(z) =explzq).

5.

lim gin(z) = sin 2.

Dee* nition 3.2 A funcrion f, de* ned in some nbd of zq is continuous ar zy if
lim f(z) = flzo).

This de= nition clearly assumes that the function is de= ned at z; and the limit on the LHS
exists. The function fis continuous in a region if it is continuous at all points in that

region.

If funtions f and gare continuous at zg then f + g, fgand f/g (g(=zg) £ 0) are also

continuous at z;.

If a function f (z) = u (x, y) +iv (x, y) is continuous at z; then the component functions

u and v are also continuous at (g, yg)-

De- nition 3.3 A funcrion f. de= ned in some nbd of zy is differemtiable ar =y if

flz)— flz
lim — L) T =0

=0 Z — Zp)

exists. The limit is called the derivative of [ at zy and is denoted by ' (zy) or -}f— {za)-
Example 3.6 f(z) = 2% Show that f'(z) = 2=.

Example 3.7 f(z) = |z|". Show that this function is differentiable only ar = = 0. In
real analysis |x| is not differentiable but |x|” is.

If a function is differentiable at =, then it is continuous at =.




Dee nition 3.4 A function is analvtic in an open set if it has a derivative at each point
in that set.
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Des nition 3.5 A function is analytic at a point zq if it is analytic in some nbd of 2y,
De+ nition 3.6 A function is an entire function if it is analvtic at all points of C
Example 3.13 f(z) = 1/ z is analytic at all nonzero points.

Example 314 f(:] =

L - B
* is not analytic anywhere.

A function 1s not analytic at a point zq, but 1s analytic at some point in each nbd of

zg then zq 1s called the singular point of the function f.

Harmonic Functions

Dee nition 3.7 A real valued function H |z, y) is said to be harmonic in a domain of
xy plane if it has continuous partial derivatives of the » rst and second order and satis* es
Laplace equation:

H”-.:' y) H:J Iyl=\




Cauchy-Riemann Equations

Theorem 3.3 If f'( zy) exists, then all the = rst order partial derivatives of component
function u | x, y) and v (x. y) exist and satisfy Cauchy-Riemann Conditions:

iy = oy
Centurion y, = —Ug
LINIVERSITY .
Example 3.8 f(z) = 2° = = — y° + i2xy. Show that Cauchy-Riemann Condtions

are satise ed.

Example 3.9 [z =
satis*ed only at z = 0.

" = x° + y". Show that the Cauchy-Riemann Condtions are

Theorem 34 Let f(z) = u(x. y) + iv|x, y) be de* ned in some nbd of the point z. If
the = rst partial derivatives of u and v exist and are continuous at z, and satisfy Cauchy-
Riemann equations at zq, then f is differentiable at =y and

f (z) = ugp +ivy = vy — iuy,.
Example 3.10 f(z) = exp (z) .Show that f' (z) = exp(z).
Example 3.11 f(z) =sin(z). Show that f' (z) = cos|(z).

Example 312 f(z) = L Show that the CR conditions are satis*ed af z = 0 but the
function f is not differentiable ar 0.




. The Cauchy-Riemann equations for two functions u(z, y) and v(z, )
are

du O du O

—=—  and —=-—
dr 0y dy  or
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(a) Show that u(z, ) = 2*~y* and vz, y) = 2y satisfy the Cauchy-
Riemann equations.

(b) The Laplace equation for a function f(z,y) is
f:xr;x: + f T .

Suppose that a and b satisty the Cauchy-Riemann equations and
have equal mixed partial derivatives (L. azy = ayy, efc.).

Show that a + b satisfies the Laplace equation.




Cauchy Integral Formulz
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1
. f(z)is assumed analytic in R but we multiply by a factor = thatis analytic
Iy

except at , and consider the integral around £

Jﬂdz

(2-12y)
C

#. To evaluate, consider the path £ + ¢; + ¢ + Cy shown thatenclosesa simply -
connected region forwhich the integrand is analytic on and inside the path:

f@ 0 (@
——z=0= |—=d1=- | —=il2
r+a+L+rf'Eﬁ]E J ca) i{z—zﬂ




Gauchy Integral Formula, cont'd

i I..IJlLI]II. n

L NIVERSITY f,f -.-%H"‘K
.. i R z : III..- I:.-" "-.:-I;
N ]n’; = - Mn’: | W \
gkt T ) | L
C Cy I\f' 4 |
Evaluate the C;, integral on a circular path, 2=, = e’ de=rid*do

[[E_f]]{ﬁ f__}u j%' 2ifln)  forr=0

&

5 J'f[* dfzsz(f[a] = ” “__I[_ - Cauchy Integral

I- ) Formula
&4 i 1=y

The value of f(z) at z; is completely determined by its values on C!



Cauchy Integral Formula, cont'd
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Note that if z; is outside C, the integrand is analytic inside C, hence by the
Cauchy Integral Theorem,

1%1’(?-’]

2m ) z-12;
.

dz =

In summary,

%Edr’ 2ni flzg), zpinsideC
z=2, |0 z; outside
-




Contour Integral

If C"is a contour in complex plane de*ned by =z (f) x(t) 4 iy (f) and a function
f(z) wixr, y) +iv (x. y) is de* ned on it. The imegral of f ( z) along the contour ' is

denoted and de= ned as follows:

Centurion [;.:.;x; /l‘f z) 2' (t) dt
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b
/ ur —uvy \dt +i [ (uy' 4+ vx')dt
= / udr —uvdy) + 1 [l wdy + vdx)

The component integrals are usual real integrals and are well de= ned. In the last form

appropriate limits must placed in the integrals.

Some very straightforward rules of integration are given below:

1. J.wf(z)dz=w [ f(z)dz where wis a complex constant.
2. Jf(2) +g(2z))dz= [_f(z)dz+ [_.g(z)d=.

3. Jose, fF(R)dz= [ f(z)dz+ [ f(z)d=.

4. |foFl2)dz| < [ |F1

5. If | f(2)| < M for all
countour .

() ) =" ()] di.

]

3]

€ C then I_[}_.f-:uf:.] < ML, where L is length of the

Example 4.4 f(z) = 2°. Find integral of f from (0. 0) to (2. 1) along a straight line
and also along st line path from (0. 0) to (2, 0) and from (2. 0) to (2,1).

Example 4.5 f(z) = 1/z. Find the integral from (2. 0) to (—2,0) along a semicircu-

lar path in upper plane given by |z| = 2.

Example 4.6 Show that Ij}f z .:I;-I < Zfor f(z) = 1/ (2" —1)and C : |z| =
2 from 2 to 2.




Cauchy-Goursat Theorem

Theorem 4.1 (Jordan Curve Theorem) Every simple and closed contour in complex
plane splits the entire plane into two domains one of which is bounded. The bounded
domain is called the interior of the countour and the other one is called the exterior of
the contour.
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De* ne a sense direction for a contour.

Theorem 4.2 Let ' be a simple closed contour with positive orientation and let D be
the interior of C. If P and () are continuous and have continuous partial derivatives
P, Py, Q: and (), at all points on C and D, then

f (Ple, ylde +Q (x,y) dy) = f [Q: (z,y) — Py (z,y)] dzdy
o

Theorem 4.3 (Cauchy-Goursat Theorem) Ler [ be analvtic in a simply connected
domain D, If C'is any simple closed contour in D, then

/ flz)dz=10
s

Example 4.7 [ (z) = 2%, exp(z), cos( z) etc are entire functions so integral about any
loop is zero.

Theorem 4.4 Ler 'y and 5 be two simple closed positively oriented contours such
that C'y lies entirely in the interior of C'y. If [ is an analyvtic function in a domain D that
contains C'y and C'; both and the region between them, then

_,I"[,:]ff,_zf flz)dz.
i Cla

Example 48 [ (z) = 1/2. Find | flz)dz if €' is any contour containing origin.
Choose a circular contour inside C'.

1
2=

Example 4.9 ]lf - dz = 2xi if C' contains z.

Example 4.10 Find [, 242 where C' : |z| = 2. Extend the Cauchy Goursat theorem
to multiply connected domains.
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Singularities

Des nition 6.1 [fa funcrion [ fails rto be analyric ar zq but is analvtic ar some poird in
each neighbourhood of zn, then zp is a singular point af f.

Dee nition 6.2  If a function [ fails to be analvite ar zq but is analviic ar each z in
0 < |z — zn| < 8 for some &, then f is said 1o be an isolated singular point of f.

Example 6.1 [ (2] L/ z has an isolated singularity ar 0.

Example 6.2 [ (2] L/ sinimz) has isolated singuwlarities ar z 0 %1,....
Example 6.3 [ (2] L/ sin(w/z) has isolated singularities ar z | /n for integral
n, also has a singularity at z 0,

Example 6.4 (2] log z all peints of negarive x-axis are singular.

Types of singularities

If a function f has an isolated singularity at z; then 3 a & such that f is analytic at all

points in 0 < |z — z2g| < &. Then f must have a Laurent series expansion about zi. The
part 3 ° b, (2 — 2p)” " is called the principal part of f.

1. If there are in* nite nonzero b; in the prinipal part then zq is called an essential singu-
larity of [,

[

If for some integer e, by, #= 0 but b, Ofor all ¢ = wm then z; is called a pole of
order rmof f. If m | then it is called a simple pole.

3. If all bs are zero then zq is called a removable singularity.



Residues

Suppose a function f has an isolated singularity at z;. then there exists a 6 > 0such

that f is analytic for all z in deleted nbd 0 < |z — 2| < &. Then f has a Laurent series
representation
= T = Ir.J”
. = f[:]=Zﬂ..[£—Cr_1] t Z—..
L cnturion . =0 = (2 — )
LINIVERSITS The coef* cient

1
by = — [z ) dz
71 xd f(z)
where ' is any contour in the deleted nbd, is called the residue of f at z;.

Example 6.6 [ (z) = ﬁ. Then .JI"{,. Fflzldz = 2xiby = 2wiif C contains zp, other-
wise 0.

Example 6.7 f(z) = ﬁf Show [ flz)dz = —Z2ifC: |z — 2| = 1.
Example 6.8 [ (z) = zexp {%] Show [ f(z)dz = wiif C : |z| = 1.

Example 6.9 f (z) = exp (Zr). Show [ f(z)dz = 0if C : |z| = 1 even though it
has a singularity at z = 0.

Theorem 6.1 [f a function [ is analytic on and inside a positively oriented countour
', except for a » nite number of points zy za, ...,z inside C', then

k
fl2)de = 2mi Resf (z:).
/. )

i=1
Example 6.10 Show thar [ 22=2_: = 107i

z|lz—1)

Residues of Poles

Theorem 6.2 If a function [ has a pale of order m at =z, then

1 ﬁrm—l
Resf |zp) = i ((z —za]l™ F(21)] .
esf (zo) zlu-lzl._m {[ m — 1) dzm™ -1 \ o) I }

Example 6.11 [ (z] = :+h Simple pole Res flzg) = 1.




Centurion

LINIVERSITY

Simple pole at = = 0. Res f (0) = 1/16. Pole of

Example 6.12 f(z) = —2—.
order 4 at =z = 2. Res f(2) = —1/16.

Example 6.13 f(z) = _I’+‘_Ig Res f(0) = —3/='. Res f(w) =

Quotients of Analytic Functions

Theorem 6.3 If a function f(z) = S' _: where P and () are analytic at zy, then

1. fissingularat = iff Q (z) = 0.
JQ (=z0).

2. f has a simple pole at z; if Q' (2g) # 0. Then residue of f at z, is P (zg)




Isolated singularities
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I/ \H‘
Removable singulariies  Poles of finite order Isolated essential singularities
(pole of infinite order)
sin(z) 1-cos(z] L l din L Az
' e walie m | - ]
z 7' 5 & [g=]) St
2743
(z-1) (z+2)

These are each discussed in more detail next.

10
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Essential singularities can be distinguished from poles by the fact that
they cannot be removed by multiplying by a factor of finite value.

Example:

|
T [

1

1
._._-’

b

T st

|

n "

s

«—— 1nfinite at the origin

We try to remove the singularity of the function at the origin by multiplying z°

-1
e =i L

-p-2

—

It consists of a finite number
of positive powers of z.

r

All terms are positive

"
As 70, ZPwow

followed by an infinite number
of negative powers of z.

[t 1s impossible to find a finite value of p which will
remove the singularity in e!Z at the origin.
The singularity 1s “essential”.



Examples of singularities: !; expaﬂdfd about
il . . : . the singularity, we
‘I: L:Jtllll:lu:n (These will be discussed in more detail later.) ey Y
~ T = Taylor
s - | e sinaularity at =0 | == aurent
- removable singularity at z = N = Neither
9 ( . pole of order p at z =z, (if p =1, pole is a simple pole)
- Ty
L (31" - isolated essential singularity at z =z; (pole of infinite order)
|
\ /1) non-isolated essential singularity z =

N L2 branch point (not an isolated singularity)
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Barrier - Branch Cut

The barrier must start from the branch point but it can
go to infinity in any direction in the z plane, and may be
either curved or straight.

In most normal applications, the barrier is drawn along
the negative real axis.

Barrier

477

-The branch is termed the “principle branch”. .
-The barrier is termed the “branch cut”.
-For the example given in the previous slide, the region,
the barrier confines the function to the region in which
the argument of z is within the range -1 < 0 <.
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» The singularities described above arise from the
non-analytic behaviour of single-valued functions.

» However, multi-valued functions frequently arise
in the solution of engineering problems.

+ For example: 5 i

Sl z=re" g Ll / \
W=7 W =r-e- |

[
i
"
N

For any value of z represented by a pointon the circumference of the circle in the z
plane, there will be two corresponding values of w represented by pointsin the w plane.




Laurent’s Theorem
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- Laurent series of a complex function f(z) is a representation of
that function as a power series which includes terms of

negative degree. It may be used to express complex functions in
cases where a Taylor series expansion cannot be applied.

flz) = Z an(2—c)"

Also say that,

{u}

/)= Zﬂi z-a) + Zu.bs. -a)",
=1

k=0

1 f(z)dz

Pri ; (z — E)ri"Tl '

ﬂ"!'I




Taylor’s series
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* Taylor series is a representation of a function
as an infinite sum of terms that are calculated
from the values of the function's derivatives at
a single point.

| "o, M ") (a)
fla)+ f [ﬂ](.r-a)+'-r2—f- (.t—a]‘+f1—rﬂ- (x=af +...+rﬂlﬂ-{x—af+...

Here, a==o , center
¥ = Zinside circle C




The Residue Theorem Section §

We saw that the mtegral of an analytic function /(z) over a
Centurion closed curve C when f(z) has one singular pomnt mside C 1s

LINIVERSITY

i
Flmal o

fdz=2at AN
L | 8=l C |
by isthe residue of f(2) at 2 L/

Residue Theorem: Let f(z) be an analytic |
function nside and on a closed path C -
except for at k singular points inside C. % /7|* * )€
Then | < |

pf(2)dz = 75’@72 Res f(z)] S
:—- A |
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Numericals from various sources
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Integral Transforms




Fourier Integral

If f(x) and f'(x) are piecewise continuous in every finite interval, and f(x) is absolutely

integrable on R, i.e.

converges,then

%[f(x—) +f(xH)]= ﬁ fer I e f (1)t e

Remark:the above conditions are sufficient, but not necessary.




Ftn) g Jen d1 - F}: “@}

[
:

W

3 r; ‘ F (k) @w Jer Ak, '_—-DC{““},
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13.13 The Dirac d-function

Before going on to consider further properties of Fourier transforms we make a
digression to discuss the Dirac d-function and its relation to Fourier transforms.
The o-function 1s different from most functions encountered n the physical
sciences but we will see that a ngorous mathematical definition exists; the utihity
of the d-function will be demonstrated throughout the remainder of this chapter.
It can be visualised as a very sharp narrow pulse (in space, time, density, etc.)
which produces an integrated effect having a definite magnitude. The formal
properties of the d-function may be summarised as follows.
The Dirac d-function has the property that

o) =0 fort#0 (13.11)
but its fundamental defining property is

/I'lrlm: ~a)dt = f(a), (1312)

provided the range of integration includes the pomnt { = a; otherwise the integral
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» Find the Fourier transform of the normalised Gaussian distribution

1 i
flif) = ———gxp | —=— | . —o0 < I =< o0
3 Y.
f\ .-.-n e
This Gaussian distribution 1s centred on f+ = 0 and has a root mean square deviation

Ar = 1. (Any reader who 1s unfamihar with this interpretation of the distnbution should
refer to chapter 30.)
Using the definition (13.5), the Fourier transform of f(r) is given by

- 1 i 1 : J: )
flw) = —— b ———exp (— 1-:) exp{ —icor) di

VIR S0 Tof2m =t
1 2 1 1 3, .3 5oy i s
= — —==¢exp 4 —— |I" + 2rtiwt + (tTiw)” — (tTCio)” dt.
> . /P 22 b 2
n J_ i =T
WER S To 20

where the quantity —{t%ie)*/(2r%) has been both added and subtracted in the exponent
in order to allow the factors involving the variable of integration r to be expressed as a
complete square. Hence the expression can be wrntten

E 1 2 3 r LY.
- exXpl—sT ) 1 I+ it )
flew) = s o {—_ eXp —A] :Jr} 2
2n ./ 2’ J_. 2z°
b R s - “

The guantity inside the braces is the normalisation integral for the Gaussian and equals
unmity, although to show this strictly needs resulits from complex varnable theory (chapter 24).
That it is equal to unity can be made plausible by changing the variable to 5 = 1 + itT°w
and assuming that the imaginary paris introduced into the integration path and limits
(where the integrand goes rapidly to zero anyway) make no difference.

We are left with the result that

— 1 —‘.':1'1:' e
o) = Tcx;u(T)_ (13.7)

which is another Gaussian distribution, centred on zero and with a root mean sguare
deviation Aw = 1/r. It 15 interesting to note, and an important property, that the Founer
transform of a Gaussian is another Gaussian.

In the above example the root mean square deviation in r was 1, and so it is

seen that the deviations or “spreads’ in ¢ and in w are inversely related:
Aw Ar = 1,

independently of the value of r. In physical terms, the narrower in time is, say, an
electrical impulse the greater the spread of frequency components 1t must contain.
Similar physical statements are valid for other pairs of Fourier-related variables,
such as spatial position and wave number. In an obvious notation, AkAx = 1 for
a Gaussian wave packet.

The uncertainty relations as usually expressed in gquantum mechanics can be
related to this if the de Broglie and Einstein relationships for momentum and
energy are introduced; they are

p = hk and E = hw.




equals zero, This leads immediately to two further useful results:
b
/ ot)dt=1 forallab>0 (13.13)
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and

/d{r = q)dt = 1, (13.14)

provided the range ol integration includes 1 = a.
Equation (13,12) can be used to derive further useful properties of the Dirac
0-function:

o) = (1), (13.15)

. | .
olat) = =a(f), (13,16}
al

fo(t) =0, (13.17)
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B Prove that o(bt) = o(t)/[h.

Let us first consider the case where b > (. It follows that

a4 TN T
} ,Hrlﬂh'lrlrhzf j(-)ﬂ[rl—=-][l!i=-/ f(t)oe)d,
J =i J o b b b h. :

where we have made the substitution = bt. But f(f) 1s arbitrary and so we mmediately
see that o(bt) = d(t)/b = o(t)/ b| for b >0,
Now consider the case where b= =¢ <. It follows that

a Rl £ WO [ Lt I R A
/ J'irhﬂhmhz/ j’(‘—);uu(—!):/ -J(E—)mn.n
=i 1y ( C Joy € (

Janss =l o AR vy
= =f(()) = =f(l)] = = o(t)dt,
{I,Hl h,f[i |h|,/,”” (f)dt

where we have made the substitution ' = bt = =ct, But f(t) is arbitrary and so

| |
o(bt) = Fmrl.

for all b, which estabhshes the result. 4
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(1) Differentiation:
Z[f (1] = iwf(o). (13.28)
This may be extended to higher denvatives, so that
Z[1"(0)] = i0Z[f(1)] = —o'flo),

and so on.
() Integration:

I
] ~
j‘f{[ f{sl;.t's] = ;'_f“'” + 2ncolm), (13.29)
0]

where the term 2nco(w) represents the Fourner transform of the constant
of integration associated with the indefinite integral.
(m1) Scaling:

1~ s
F[flat =-'(— _ 1330
[f(ar)] HJHJ (13.30)
(1v) Translation:
Z1f(t +a)) = *f(w). (1331)

(v) Exponential multiplication:

]

F[e*f(1)] = flo +ia), (13.32)

where 2 may be real, imaginary or complex.
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» Prove relation (13.28),

Calculating the Fourier transform of {'(t) directly, we obtain

v &R J =3
| g ‘ [ -
= = l{‘ ' }‘[.I'II‘ . — / lin) @ 'IHHJ.JII
H—E il 'Ikr—lT i

= iof(w),

if f(t) = 0 at t = £oo, as it must since [ |f(r)|dt is finite. <




Example 15.4.2  Hear Fow PDE

To illustrate another transformation of a PDE into an ODE, let us Founer transform the
heat flow partial differential equation

1

v
ax?’

where the solution y(x, 1) is the temperature in space as a function of time. By taking the
Fourier transform of both sides of this equation (note that here only @ is the transform
variable conjugate to x because 1 is the time in the heat flow PDE), where

W0
Centurion .

LINIVERSITY

i

I ol
Viw, 1) = — wix, ne'™ dx,
\.I'IIIE.IT & Y
this yields an ODE for the Fourier transform W of y in the time variable 1,
d¥(w, 1)

- = —a*0*V(w,1).
dt

Integrating we obtain
2 2 . . r.ljm:f
nV==-g"wt+InC. or V=_C¢ "

where the integration constant C may still depend on @ and, 1n general, 15 determined
by initial conditions. In fact, C = W(w, () is the initial spatial distribution of ¥, so it is
given by the transform (in x) of the initial distribution of ¥, namely, ¥ (x, 0). Putting this
solution back into our inverse Fourier transform, this yields

| o 3.2
Wix, 1) = —_/ Clw)e™ ™" du,
Vain J-s

For simplicity, we here take C w-independent (assuming a delta-function imtial temper-
ature distribution) and integrate by completing the square in w, as in Example 15.1.1,
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I wf a™W [BR "2 T L= TRV D WY R IR W o ~W

making appropriate changes of variables and parameters (a> — a1, @ = x,1 = —w),
This yields the particular solution of the heat flow PDE,

II fr ( ll_ )
vix,l)= —ex = |,
avz N\ "4

which appears as a clever guess in Chapter 8. In effect, we have shown that  is the inverse
Fourier transform of C exp(-a’w’t). n

Euﬂli-‘l'ﬂ 1 : J : e sr s s e PR
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15.5

CONVOLUTION THEOREM

We shall employ convolutions to solve differential equations, to normalize momentum
wave functions (Section 15.6), and to investigate transfer functions (Section 15.7).

Let us consider two functions f(x) and g(x) with Founier transforms F(r) and G (1),
respectively. We define the operation

—

A
fep= / g(v) flx = v)dy (15.52)

\,-"3.'1 d =05

as the convolution of the two functions [ and g over the interval (=00, a0). This form of
an integral appears in probability theory in the determination of the probability density of
two random, independent variables. Our solution of Poisson’s equation, Eq. (9.148), may
be interpreted as a convolution of a charge distnibution, p(r;), and a weighting function,
(dmeplry = r5]) L. In other works this is sometimes referred to as the Faltung, to use the
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FIGURE 15.5

German term for “folding.”> We now transform the integral in Eq. (15.52) by introducing
the Founer transforms:

0
g(v) flx —vydy = f gy }f e " Vdrdy
I =

s F{I][ {1}#”-‘&1} Sa? |
ﬁ [ Peleaudll |

oo
=f F(OG(He " dr, (15.53)

O

interchanging the order of integration and transforming g(v). This result may be inter-
preted as follows: The Fourier inverse transform of a product of Fourier transforms is the
convolution of the original functions, f = g.

For the special case x = () we have

o o0
f F(r)G(r)dr =f f(=y)g(y)dy. (15.54)
— o0 — g

The minus sign in —y suggests that modifications be tried. We now do this with g* instead
of g using a different technique.
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The Laplace Transform

Time Integration:

The property is:

L j £(t)dt =[ [ F(x)dx o™ dt

0 0Lo

— e =

Integrate by parts .

Let u=| f(x)d. du=f(t)dr

]
and

. |
dv=e"dt, v=——e"
s
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Home Task:

For Inverse Laplace
transform material go
through Arfken
available in your library.
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Real  Itegation Theoren

This theorenn establishes the relationshup Deween the Laplace: transfom of 2 finction

and that of s miegral It sates that

o

N

(i)

- F(s)
§

0L

The proof of this theotem 5 camed out by miegratmng the defintion of the Laplace
manstorm by pars. This proof 15 sumilar to that of the real differentiation theorem and

15 lef as an exercise, The Laplacg transtorm of the nth miegral of a function 5 the
manstommn of the function dvided by §",




Laplace Transforms of Common Functions

Function Laplace Transform Restrictions
1 a 5=0
s
. - oot 1 s>a
L cnturion s—a
LINIVERSIT?Y .
s ¢ : s =0, n an interger = 0
v [ L Sn+1
s
cos at s5=0
52 + a2
. =]
sin at 5=0
s< + a°
cosh at 5 = 5 s >|a|
5T —4
. a
sinh at 5 =\a
a2 8|
e cos bt sS—4g s>a
2 2
(s—a)” +b
e sin bt bz §>4a
(s—a) +b?
gt . ”"5 — s =a, n an integer > 0
\s—a)
1 r
fct) E,E{fnsl.-"c]} c =0

£7) (1) s"c{r(t)}-s"r(0)-..— sr"2)(0)-rl""Y(0)



Table of Inverse Laplace Transform

. 1
& _ 1. L I{—}:l
- 8
- ] l{ 1 }:Em
Centurion & —

2. L
UNIVERSITY 1 1
ke -.!':l — = ’ . :112:- 3'.---1
af gm—1
4. £ 1 }: et
(8 — a)® (n — 1)!

_ 1 1 1 .
5. L {m —35111-51‘-

6. L : {Lﬁ}} — cos bt

1
2 — —sinh at
| 82 — -:13 } a

s L1 { 2} — cosh at
— a

1 1
9. L1 } = Iu_""”! sin bt
¥

(s —a)? + b2

1 8 — a B
10. L { a2 1 b?} — ™ cos bt

1 d - i
11. O { (% 1 b%)2 } = Ebfblﬂbf




Laplace Transtorm
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| s Theorems
Theorem Description

Definition of Laplace Transform |~ L{ f()} = j (tydt=F(s)
Linear Property Liaf (t)+bg(r)) = aF(s)+bG(s)
Derivatives L™ (1) =5"F(5)=5" f(0) == *(0)
Integrals jf (r)dz} = —F ()
First Shifting Property . L{e" (1)) =F(s-a)
Second Shifting Property [} flt-au(t-a)}=e"“F(s)




Transtorm of derivatives
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ONIVERSITY » Laplace transform of the derivative f"of any order :

Letf F, i f "be continuous for all t>0 and [ be
piecewise continuous on every finite interval on the semi-axis

t > () then transform of /" given by,

L(f")=s"L(f)=5""F(0)=5"2f(0)=...= f"*(0)




. For tirst-order derivative:
Centurton

T [ /(1) =L {0}~ 10)

For second-order derivative:

L{f"(t)} =s*L{f(t)} - s f(0) - £'(0)

For third-order derivative:

L{f"(t)} =’ L{f(t)} - 5*f(0) - 5 £'(0) - £"(0)

For n® order derivative:

L{f*(8)} = s"L{f()} - "' (0) = 8" 2 f'(0) = --- = f*°1(0)




The Laplace Transform of the First Derivative
()] =) -0

W / L v

0

'/(F(t)(-S) o't

L[f'(t)] = /ﬁdv T ) |




The Laplace Transform of the Third Derivative
L[f'(t)] =L i) -0

L[f"(t)] = s2Lit]-s10)- (0
L) = sL[f"(t)] ()

- 5|s? L[f(t)]-f(O) - f'(o)r (0

L) = 5 Lt -20)-sf(0)- (0
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Unit Step Function

u(t-a)=0,t<a

I,t>a

L{u(t-a)}= [e*u(t-a)d

0
= [e* (0)dt+[e* (1)d
0 a
| 1.,
= —— ==k
-S| s
if a=0
1
L{U(t)}j
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Application to linear differential equations

We illustrate the Laplace transform technique by a simple example of har-
monic oscillator with a time-dependent external force f(t) =t.

F+uwlr=t, (15)
z(0) =a, £(0)=0b. (16)
The starting point is to Laplace-transtorm the equation:
o - o
f dte ™ i +w'z] = / dte Pt (17)
0 Jo

For the derivatives in the lL.h.s. of (17) we use (4), with (16) taken into
account. This yields

o0
f dte P |3 + u.:-"].l‘l = (p®* + w?)X(p) —pa—b, (1R)
0
where
o0
X(p) = f dte P x(t) . (19)
0
The integral in the r.h.s. of (17) needs to be done explicitly:
o a a1 1
P o St die™ = —— - = —. (20)
0 dp Jo dp p p
We thus have
g , @ 1 .
(p" +w™)X(p) —pa—0b = P—i ; (21)
and find _ .
1+ p*(pa + b) 1+ p°(pa+0)

X(p) = —— _ = — , — .
P2 +w?)  pPAp—iw)(p +iw)
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Now we perform the inverse transform

1 1+ p*(pa + b)) e
211 Jo pPp —iw)(p + w)

zil) = dp . (23)

That is we sum up all the residues of the function

1+ p*(pa + b)] e
p2(p—iw)(p+iw)

(24)

There are three poles. The two simple poles p = +iw come from the Lh.s.
of the original differential equation, while the second-order pole at p =0 is
totally due to the particular form of the external force. The residue caleulus
routine leads to the final answer

r(t) = t/w® + acoswt + (b/w — 1/w”) sinwt . (25)
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Problem 45. Use the Laplace transtorm method to solve for the evolution of a
damped harmonic oscillator with a time-independent external force:

P+t 4i=fy. (26)

00)=0, #(0)=0, (27)

Find z(f); make sure it is real and does satisty the equation and the imitial condi-
tions. Compare two cases: 0 <y < w and v > .

I we are dealing with a system of linear differential equations, the proce-
dure is the same, We Laplace-transform each of the equations and arrive at
a system of algebraic equations for the Laplace transtorms of the unknown
functions. From this system we find each of the Laplace transforms and
then perform the inverse transforms.
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Problem 46. Use the Laplace transform method to solve for the evolution of
one of two coupled harmonic oscillators (the coupling force is proportional to the
relative displacement of the oscillators, the proportionality coefheient A > 0):

Iy 4 *qu Alze — 1q) . (28)
I'J t .a.,'.::.l"_r Al I Ia) . {..‘H”
Find z(t) for t > () under the following initial conditions:

r(0)=0, 1(0)=0, xra(0) =0, T2(0) = 1. (30)

Make sure x1(f) is real and does satisfy the initial conditions.




Laplace Transtorm
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* Applications of the Laplace transtorm
- solve differential equations (both ordinary and partial)
— application to RLC circuit analysis
* Laplace transform converts differential equations in
the time domain to algebraic equations n the
frequency domain, thus 3 important processes:
(1) transformation from the time to frequency domain
(2) manipulate the algebraic equations to form a solution

(3) mverse transformation from the frequency to time domain




Laplace transform of an impulse ‘function’ (Dirac delta
distribution)

Centurio PR ¢ B R Y
|LI|J .L”:h“ L((>(f))= J—G Sfdf= € Sf‘ =
| /e o 8—)008 se 0
lim [6’_35—1]
c—0l =-s¢

Writing ¢* as a McLaurin series

0 ¢ ) L, 1,
e’ =1+ x+—x"+—xhot
N 3l

Writing ¢™ as a McLaurin series

o . -I- ; \2 -I- 4
e~ =l+(—38)+;(—88) +ﬂ—T(—S€)1h+OI,
Lk %




Laplace fransform of impulse (Dirac delta distribution)
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SN e =1=(-s5}+ _H{—.a'z:]' + 1{[—35?}5 +hol.
2 =] 1 l )
i =1+ —(=s&)+—(=s¢] +hot.
—$8 2! R

o dm (e o] lim | 1
L{o(t))= = |+ —(=se)+—(=sg) +hot |=1
=0 —sg =0 2! 3!

f.-[f“f(r])=l
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Thank you!
All the best for Exams !




