Metabolism

- Today in class we will discuss:
 - The definitions of *metabolism*, *catabolism*, *anabolism* and *nutrient pool*
 - Their relationship
 - Carbohydrate metabolism
 - Glycolysis
 - Citric acid/tricarboxylic (TCA) cycle
 - Electron transport system (ETS)
 - Oxidative phosphorylation
 - Sources for glucose
 - Glycogenesis
 - Glycogenolysis
 - Gluconeogenesis

Energy

- Cells break down organic molecules to obtain energy
 - Used to generate ATP
- Most energy production takes place in mitochondria

Essential Materials

- Oxygen
- Water
- Nutrients
 - Organic substrates
 - Mineral ions
 - Vitamins

Sources of Essential Materials

- Oxygen
 - Absorbed at lungs
- Other substances
 - Absorbed at digestive tract

Materials Transport

• Cardiovascular system

Carries materials through body

- Materials diffuse
 - From bloodstream into cells

Metabolism

• Refers to all chemical reactions in an organism

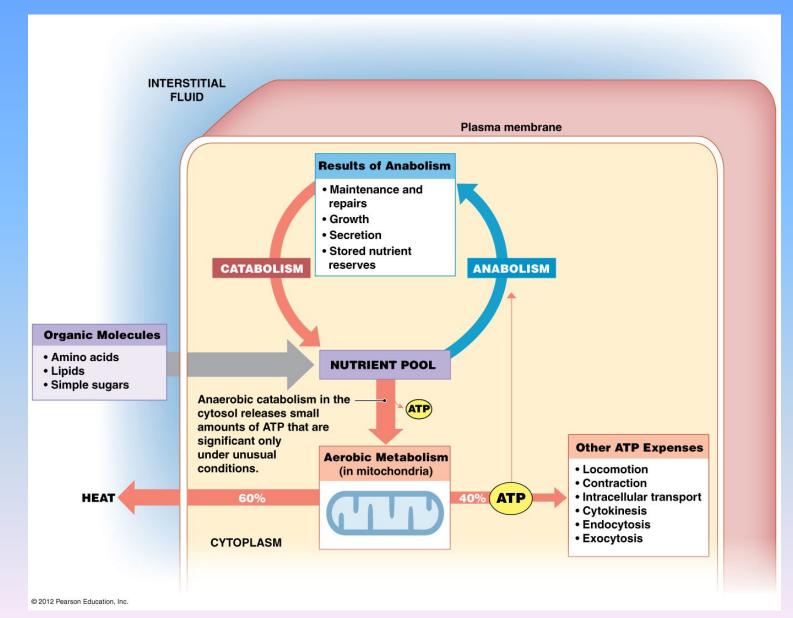
Cellular Metabolism

- Includes all chemical reactions within cells
- Provides energy to:
 - Maintain homeostasis
 - Perform essential functions

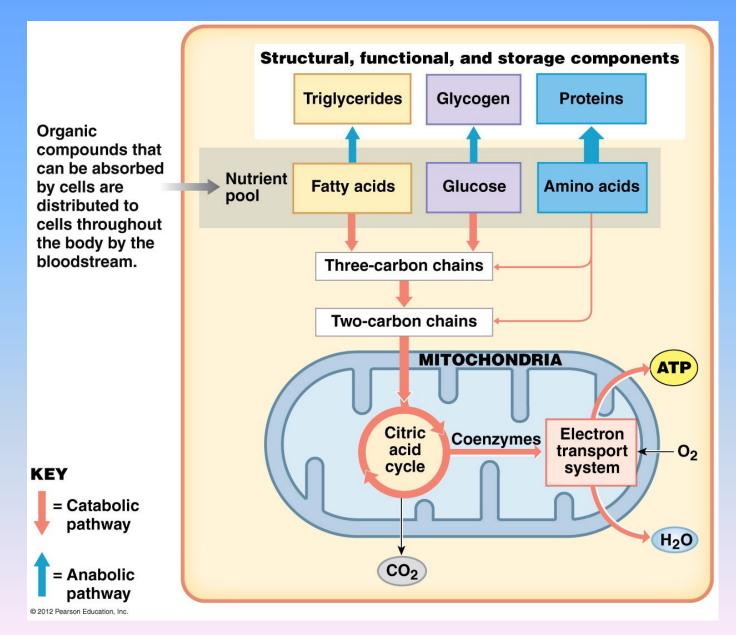
Metabolic Turnover

- Cell recycling
- Periodic replacement of cell's organic components
- Involves:
 - Catabolism = breakdown of organic substrates
 - Releases energy used to form high-energy compounds (e.g., ATP)
 - Anabolism = synthesis of new organic molecules

Functions of Organic Compounds


- Perform structural maintenance and repairs
- Support growth
- Produce secretions
- Store nutrient reserves
 - Lipids in adipose tissue, bone marrow, liver
 - Glycogen in muscle and liver

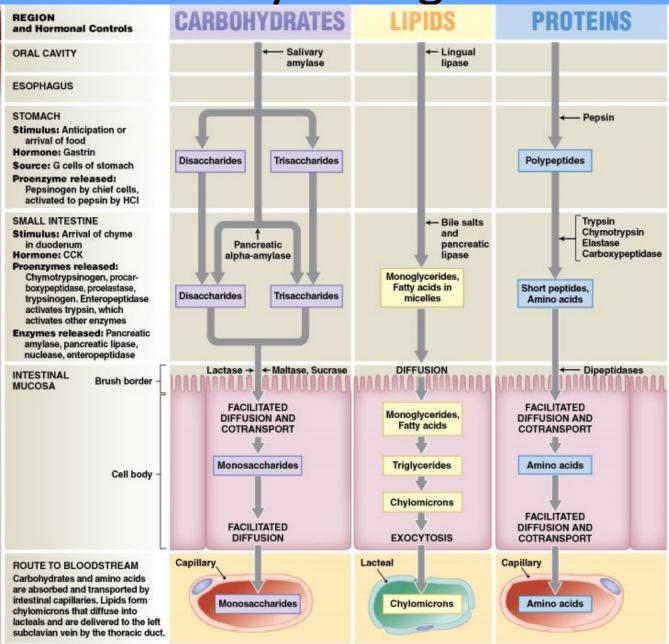
Nutrient Pool


- Contains all organic building blocks cell needs to:
 - Provide energy
 - Create new cellular components
- Source of substrates (nutrients) for catabolism and anabolism, e.g.,

- Glucose, fatty acids, amino acids

An Introduction to Cellular Metabolism

Nutrient Use in Cellular Metabolism


Key Organic Compounds

- Glycogen
 - Most abundant storage carbohydrate
 - Branched chain of glucose molecules
- Triglycerides
 - Most abundant storage lipids
 - Primarily of fatty acids
- Proteins
 - Most abundant organic components in body
 - Perform many vital cellular functions

Preference for Energy Sources

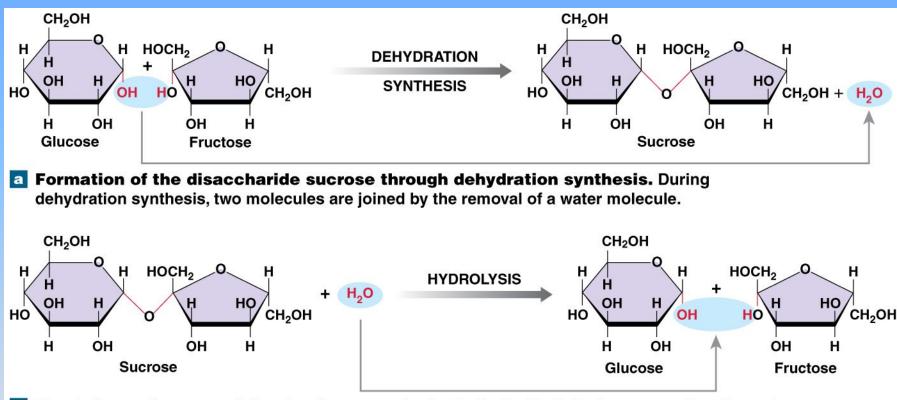
- Carbohydrates (glycogen)
 - \rightarrow short carbon chains, e.g., glucose
- Lipids (triglycerides)
 - \rightarrow FAs + glycerol
- Proteins
 - \rightarrow amino acids
 - Only used if other sources not available, e.g., in starvation

Summary of Digestion

Figure 24-27

Carbohydrate Metabolism

- Generates ATP and other high-energy compounds by breaking down carbohydrates
 → glucose
 - glucose + oxygen \rightarrow carbon dioxide + water


Step 1: Obtain Glucose

- From carbohydrate digestion
 - Polysaccharides (glycogen, starch)
 - Salivary and pancreatic amylases \rightarrow glucose
 - Disaccharides, e.g., sucrose, maltose, lactose
 - Brush border enzymes
 - e.g., sucrase, maltase, lactase → glucose (from disaccharides)
 - Monosaccharides
 - Glucose
 - Fructose, galactose \rightarrow glucose (in liver)

Disaccharide Digestion

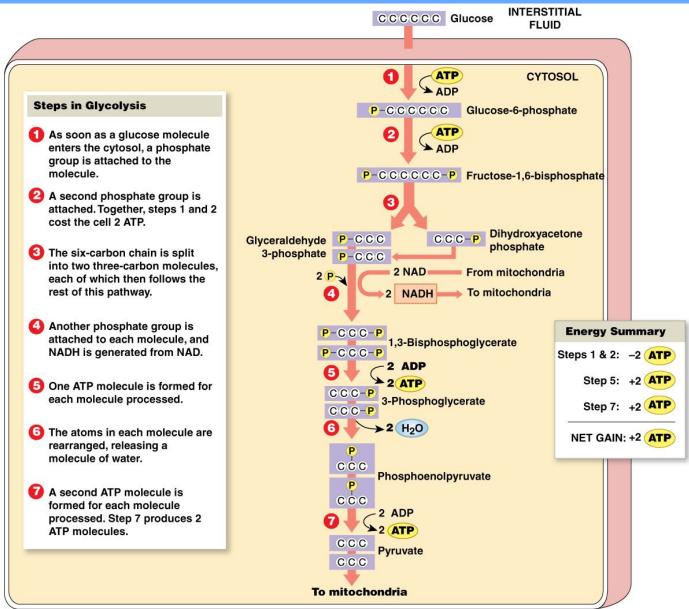
Disaccharide	Enzyme	Monosaccharide
(C ₁₂ H ₂₂ O ₁₁)	(Brush Border)	(C ₆ H ₁₂ O ₆)
Sucrose	Sucrase	Glucose +
		Fructose
Lactose	Lactase	Glucose +
		Galactase
Maltose	Maltase	2 molecules of
		Glucose

Formation and Breakdown of Complex Sugars

b Breakdown of sucrose into simple sugars by hydrolysis. Hydrolysis reverses the steps of dehydration synthesis; a complex molecule is broken down by the addition of a water molecule.

Step 1: Obtain Glucose

- From glycogenolysis
 - Catabolic conversion of glycogen into glucose
- From gluconeogenesis
 - Synthesis of glucose from lipid or protein


Step 2: Use Glucose to Generate ATP

- Involves 2 pathways
 - Glycolysis
 - Anaerobic catabolism of glucose (C6) to pyruvic acid (C3)
 - Cellular respiration
 - Aerobic catabolism of pyruvic acid

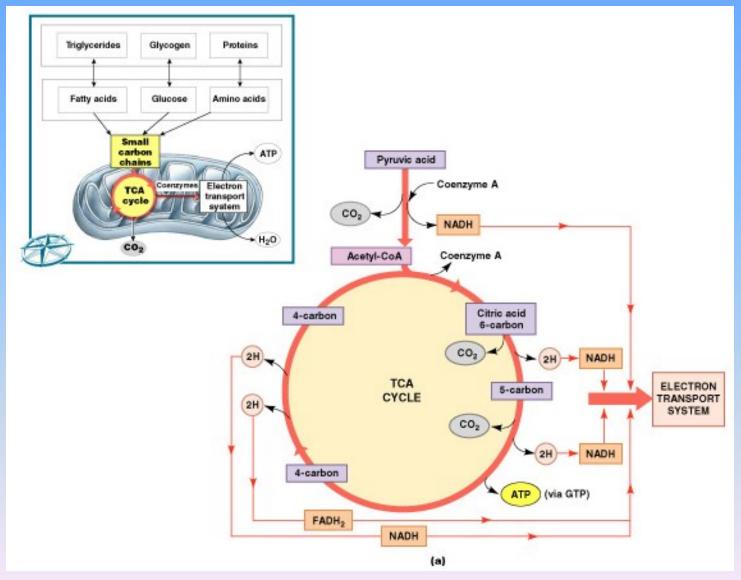
Glycolysis

- Anaerobic metabolism
 - Does not require O2
- Breaks down glucose (6C) in cytosol
 - Into 2 pyruvic acid (3C) molecules used by the mitochondria
- Energy yield
 - Net gain = 2 ATP/1 glucose molecule
- Only source of ATP for energy for RBCs (lack mitochondria)
- Used by muscle fibers during periods of active contraction (when O2 used up)

Glycolysis

Cellular Respiration

- Aerobic metabolism
 Requires O2
- Occurs in mitochondria
 - Consumes O2
 - Produces ATP
- Involves:
 - Tricarboxylic acid (TCA) cycle
 - aka citric acid cycle, Kreb's cycle
 - Oxidative phosphorylation
 - Electron transport system (ETS)
 - aka respiratory chain

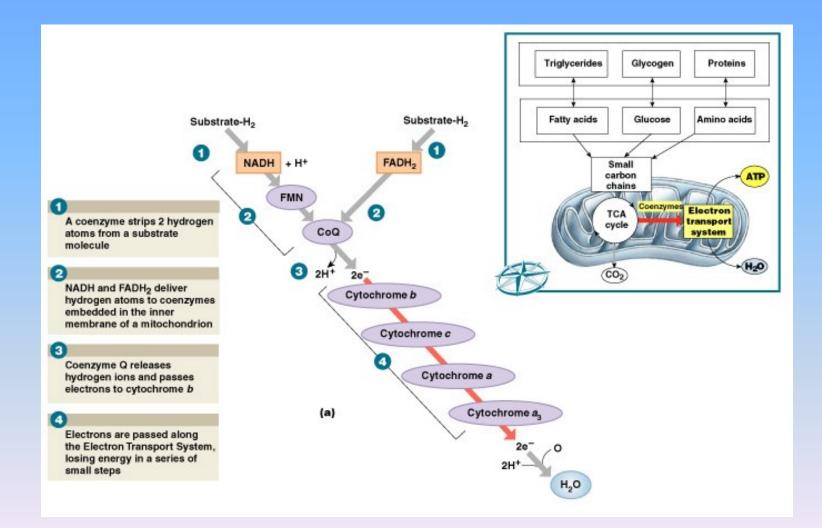

Catabolism of Pyruvic Acid

- If O2 supplies adequate mitochondria absorb pyruvic acid molecules
- (In glycolysis, 1 glucose molecule) → 2 Pyruvic acids (3C) →
 - 2 Acetyl-CoAs (2C) + 2 CO2

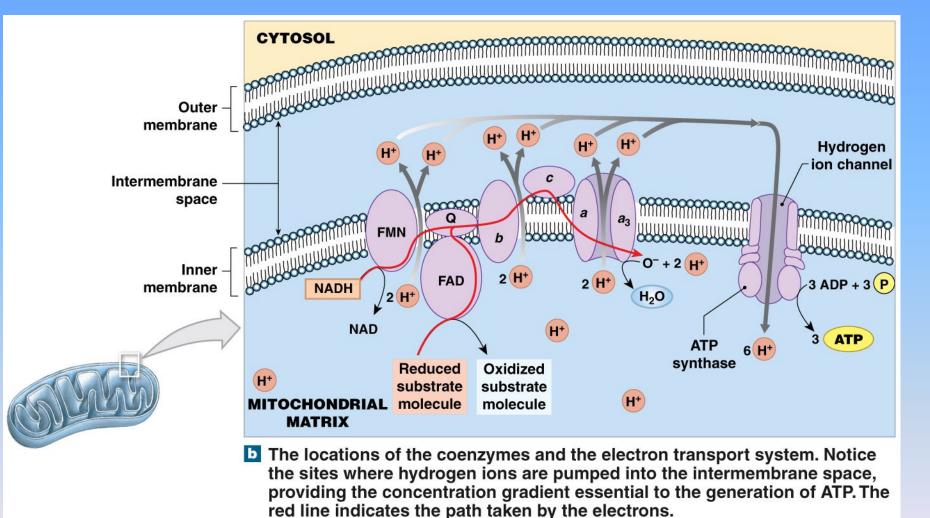
TCA Cycle

- Occurs in mitochondrial matrix
- Acetyl-CoA (2C) + 4C \rightarrow 6C \rightarrow 5C \rightarrow 4C
- C atoms removed and combined with O2 → CO2
- H atoms removed by coenzymes (FAD, NAD)

TCA Cycle

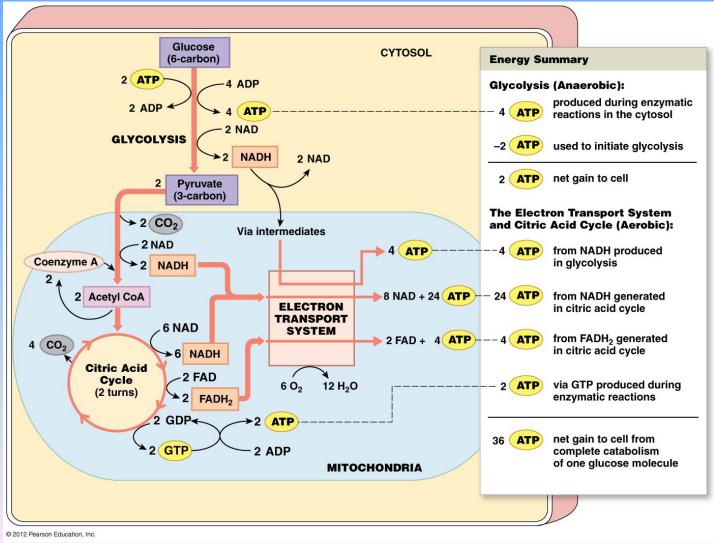

- Most important mechanism for generating ATP (90% used by body)
- Occurs in mitochondria
- Requires:
 - 02
 - Coenzymes (FAD, NAD)
 - Electrons (from H atom)
- Results in:

– 2 H2 + O2 → 2 H2O


Electron Transport System (ETS)

- Key series of reactions in oxidative phosphorylation
- Involves sequence of cytochromes (protein + pigment) in inner mitochondrial membrane
- Coenzymes (NAD, FAD) deliver H atoms to inner mitochondrial membrane
- H atom \rightarrow H+ + e- (electron)
- Electrons

Enter ETS and pass along cytochromes



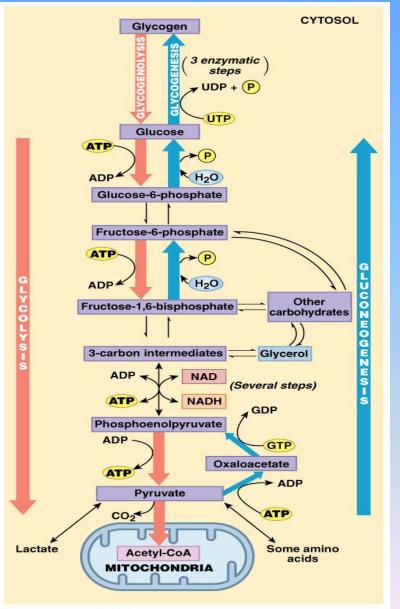
- Electrons
 - Transfer energy
- H+
 - Pumped into intermembrane space
 - Re-enters matrix \rightarrow energy to generate ATP
- At end of ETS, e- + O- + H+ \rightarrow H2O
- Energy yield = 36 ATP/glucose
 - 2 from glycolysis
 - 34 from oxidative phosphorylation

© 2012 Pearson Education, Inc

Summary: Energy Yield of Aerobic Metabolism = 36 ATP

Summary: Cellular Respiration

- Begins with glucose
- TCA \rightarrow CO2 of respiration
- Oxidative phosphorylation
 - Uses O2 of respiration
 - Combines H + O \rightarrow H20


Summary: Carbohydrate Metabolism

- Involves:
 - Catabolism
 - Anabolism
- Independently regulated
- Requires different sets of enzymes

Glycogen Metabolism

- Anabolism = glycogenesis
 - = Formation of glycogen from glucose
 - Occurs slowly
 - Glycogen stored in cytoplasmic granules
- Catabolism = glycogenolysis
 - = Breakdown of glycogen to form glucose
 - Occurs very quickly

Carbohydrate Catabolism and Anabolism

Gluconeogenesis

- Synthesis of glucose from non-carbohydrate precursors:
 - Lactic acid
 - Glycerol
 - Amino acids
- Glucose stored as glycogen in liver and skeletal muscle

A&P NEWS

- Relative energy yields and importance of :

Carbohydrates (CHOs)

Lipids

Proteins

- HDLs

- LDLs

 Lipid metabolism Lipogenesis

Lipolysis

Lipid transport and functional roles of:

Today in class we will discuss:

Lipids

- Largest energy reserve in adults (especially when glucose limited
 - Basis for Atkins diet
- Produce large amounts of ATP
 FA release 1.5X energy of glucose but takes longer
- Excess CHOs converted into lipids
- Stored as adipose tissue
- Triglycerides = most abundant lipid in body

Lipid Catabolism

- Also called lipolysis
- Breaks lipids down into pieces that can be:
 - Utilized for energy
 - Converted to pyruvic acid or acetyl-CoA and enter TCA cycle
 - Stored
- Occurs in mitochondria

Triglyceride Catabolism

- Hydrolysis splits TG into glycerol + 3 FA
- Glycerol \rightarrow pyruvic acid \rightarrow TCA cycle
- FA → acetyl-CoA (via beta oxidation) → TCA cycle

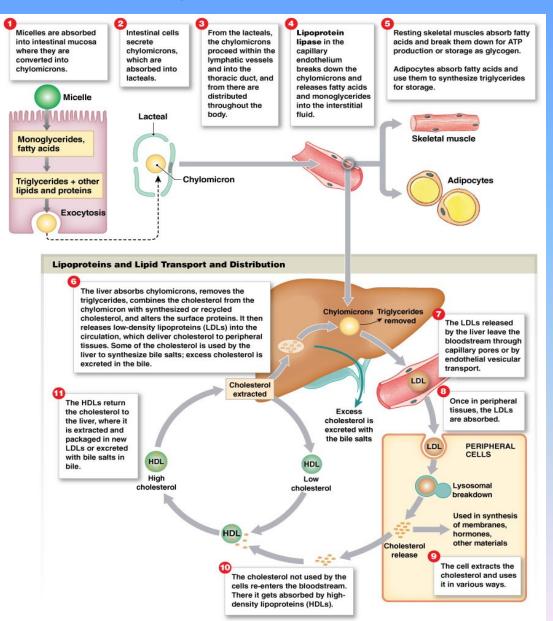
Lipid Anabolism

- Also called lipogenesis
- Glycerol + FA(s) \rightarrow mono-/di-/tri-glycerides
- Can use almost any organic substrate to synthesize lipids
 - Because lipids, amino acids, and carbohydrates can be converted to acetyl-CoA

Free Fatty Acids (FFAs)

- Are lipids
- Important energy source:
 - When glucose supplies limited
 - During periods of starvation
- Liver cells, cardiac muscle cells, skeletal muscle fibers, etc.:
 - Metabolize free fatty acids
- In blood, are generally bound to albumin (most abundant plasma protein)

- Lipid-protein complexes
- Form in which most lipids circulate in bloodstream
- Distribution and formation controlled by liver
- Classified according to size and proportions of lipid (glycerides, cholesterol) vs. protein
 - Chylomicrons
 - LDLs
 - HDLs


- Chylomicrons
 - Largest lipoproteins
 - Produced in intestinal tract and enter lacteals → thoracic duct → systemic circulation
 - Carry absorbed lipids from intestinal tract to bloodstream

(vs. other lipoproteins that carry lipids between tissues)

- LDLs (low-density lipoproteins)
 - "Bad" cholesterol
 - Deliver cholesterol to peripheral tissues for:
 - Membranes, hormones, storage
 - Excess cholesterol \rightarrow plaques = atherosclerosis
 - Primary cause of coronary artery disease (CAD)
 - May \rightarrow myocardial infarction (heart attack)

- HDLs (high-density lipoproteins)
 - "Good" cholesterol
 - Transport excess cholesterol from peripheral tissues back to liver for storage or excretion in bile
 - Do not cause circulatory problems

Lipid Transport and Utilization

Proteins

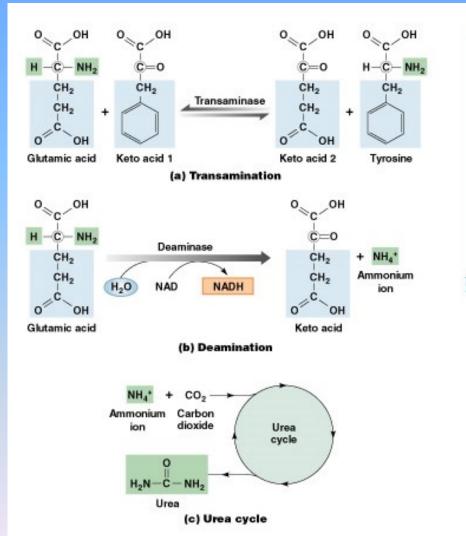
- Body synthesizes 100,000 to 140,000 proteins:
 Each with different form, function, and structure
- All proteins are built from the 20 amino acids

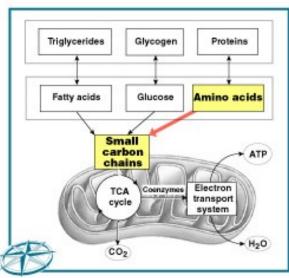
Protein Metabolism

- Cellular proteins continuously recycled in cytosol
 - Peptide bonds broken \rightarrow amino acids (AAs)
 - Free AAs used in new proteins

Protein Metabolism

- If other energy sources (CHO, lipid) inadequate, AAs can enter TCA cycle → ATP but:
 - More difficult to break apart
 - Produce toxic by-product, ammonia (NH₃) which is converted into urea in liver
 - Body needs protein for structural and functional cell components

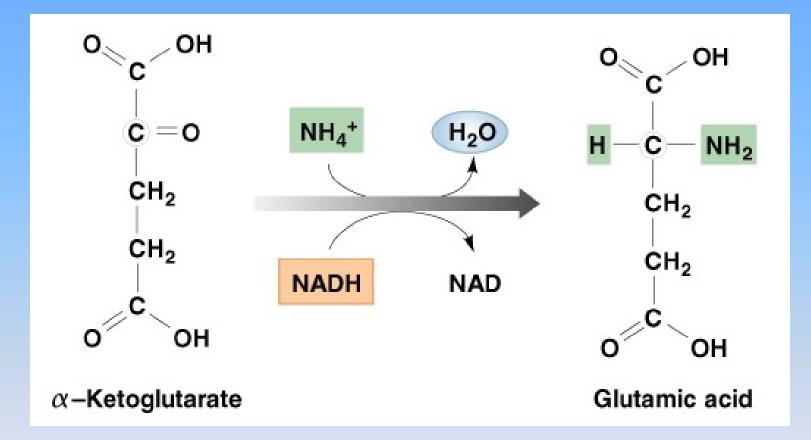

Deamination


- Prepares amino acid for breakdown in TCA cycle
- Removes amino group and hydrogen atom and generates NH4 (ammonium ion)

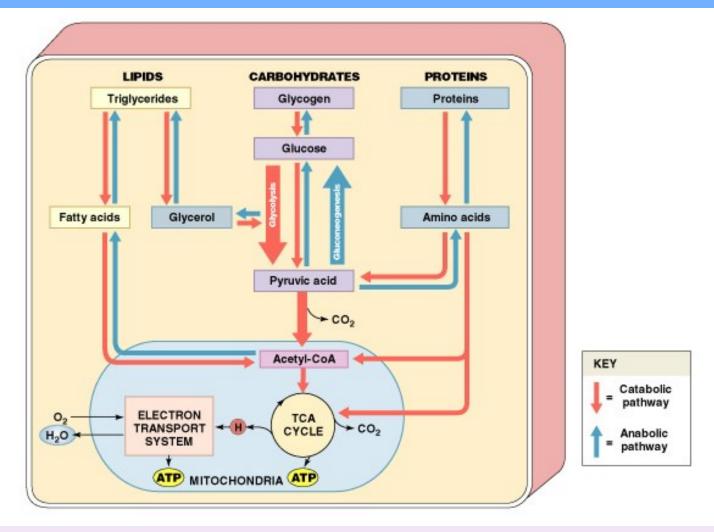
Ammonium lons

- Highly toxic, even in low concentrations
- Liver cells (primary sites of deamination) have enzymes that use ammonium ions to synthesize urea (water-soluble compound excreted in urine)

Amino Acid Catabolism



Amino Acid Anabolism


- 12/22 AAs readily synthesized by body = nonessential AAs
- Other 10 = essential AAs

Must be acquired through diet

Amination

Summary: Pathways of Catabolism and Anabolism

Ketone Bodies

- During fasting or in absence of glucose (e.g., diabetes)
 - Lipid and amino acid catabolism \rightarrow acetyl-CoA
- Increased acetyl-CoA causes ketone bodies to form, e.g., acetone

Ketosis

- High concentration of ketone bodies in body fluids
- Lowers plasma pH
- May cause dangerous drop in blood pH (ketoacidosis)
 - pH < 7.05
 - May cause coma, cardiac arrhythmias, death

Energy Yield from Nutrients

- When nutrients (organic molecules) are catabolized they → CO₂ + H₂O + ATP
- Energy released measured in calorimeter
- Expressed in Calories (C)/gram
- Calorie = amt of heat required to raise temperature of 1 kg of water 1 degree C

Energy Yield from Nutrients

- Lipids \rightarrow 9.5 C/g
 - Greater because many C and H atoms already bound to oxygen
- CHO → 4.2 C/g
- Protein \rightarrow 4.3 C/g
- Calorie count of foods reflects mixture of fats, CHO, proteins