

ASAC 1101 : FUNDAMENTALS OF SOIL SCIENCE (2+1)

Level : B.Sc (Ag), I semester

Dr. Bishnuprasad Dash

SOIL SCIENCE AND AGRICULTURAL CHEMISTRY M.S.SWAMINATHAN SCHOOL OF AGRICULTURE, CUTM, PARLAKHEMUNDI

Topic Soil Minerals, formation and classification

Minerals

- Minerals are solid substances and composed of atoms having an orderly and regular arrangements.
- It is a naturally-occurring homogeneous solid substance of inorganic origin having definite chemical composition and ordered atomic arrangement.

Formation of Minerals

- When the molten magma solidifies, the different elements present therein freely arrange themselves in accordance with the attractive forces and geometric forms.
- Geometrically, it is possible to arrange only 4 oxygen anions around a central Silicon cation so that all are touching each other. This is the arrangement of a tetrahedron.
 The silicate tetrahedron is the fundamental building block of all the silicate minerals of the Earth's crust.

- ✤ The amount of charge carried by 'Si'-ion is 4⁺ and by 'O' is 2⁻. In order to attain neutrality, one Si⁴⁺ ion would combine with two oxygen ions (2 x 2⁻) to form SiO₂, but geometrically stable structure is formed when one Si⁴⁺ ion combines with 4O²⁻ to form a tetrahedron (SiO₄)⁴⁻ which carries a net -ve charge of 4.
- In nature, the geometry and valency constraints are reconciled; first by linking together tetrahedra so that oxygen ions are shared between neighboring silicon, thus reducing the -ve charge deficit, second, by making use of the positive charges of other metal cations to balance the -ve charge. Both these occur together to produce a neutral mineral.
- As a result of this, the basic tetrahedron arrange themselves in an orderly manner according to a fixed plan, forming different minerals which are called primary minerals.

Basic Structural Unit

silicate tetrahedra

Silicate class	Formula
Nesosilicates	(SiO ₄) -4
Sorosilicates	(Si ₂ O ₇) ⁻⁶
Cyclosilicates	(Si ₆ O ₁₈) ⁻¹²
Inosilicates (Single chain)	(SiO ₃) ⁻²
Inosilicates (Double chain)	(Si ₄ O ₁₁) ⁻⁶
Phyllosilicates	(Si ₂ O ₅) ⁻²
Tectosilicate	(SiO ₂)

Classification of minerals based on Quantity (amount present)

A. Essential Minerals:

- Form the major part of rock and are instrumental in nomenclature of rocks.
- Occur in quantities varying from 95-98%.
- ✤ Calcite, silicate minerals etc.

- **B.** Accessory Minerals:
- ✤ Occur in subsidiary amount (2-5%).
- * Apatite, pyrite, magnetite.

Classification of minerals based on Mode of Origin

A. Primary Minerals:

- These minerals are formed due to crystallization of molten magma.
- This is the original mineral component of rock.
- These are formed at elevated temperature.
- ✤ Mica, hornblende, quartz, feldspar.

B. Secondary Minerals:

- These minerals are formed by alteration of the primary minerals and by resynthesis and recrystallization during weathering.
- The clay fraction of the soil is constituted primarily of secondary minerals.
- Being fine sized, the inorganic fraction is physico-chemically the most reactive.
- Clay minerals (Kaolinite, smectites, vermiculites etc.), serpentine, gypsum etc.

Occurrence of Important Rock-forming Minerals and their relative abundance

Minerals (arranged in order of their crystallization)	Important constituents other than 'Si' & 'O'	Percent distribution
A. Primary Minerals	·	•
Ferromagnesians		
Ortho or Inosilicales:		
Olivines	Fe, Mg	16.8
Pyroxenes	Ca, Na, Fe, Mg	
Amphiboles, etc.	Ca, Na, Fe, Mg, Al, OH	
Phyllosilicates:		
Biotite (black mica)	K, Fe, Mg,	3.6
Muscovite* (white mica)	К,	
Non-ferromagnesians		
Tectosilicates:		
Feldspars		
Anorthite	Ca, Al	
Albite	Na, Al	61.0
Orthoclase	K, Al	
Quartz	-	11.6
B. Secondary (Clay) Minerals	Na, K, Ca, Mg, Fe, Al, OH	6.0
C. Others		1.0

Classification of minerals based on Specific Gravity A. Light Minerals:

- Minerals having specific gravity below 2.85 are called as light minerals.
- Quartz, feldspar, muscovite.

B. Heavy Minerals:

- Minerals having specific gravity more than 2.85 are called as heavy minerals.
- Haematite, pyrite, pyroxene, amphiboles, olivine.

Classification of minerals based on Chemical composition

Group	Examples
Native elements	Graphite, gold, copper, sulphur etc.
Oxides and Hydroxides	Haematite, goethite, limonite etc.
Sulphates	Gypsum
Sulphides	Pyrite (FeS ₂)
Carbonates	Calcite
Halides	Rock salt, NaCl
Phosphates	Apatite
Silicates	Orthoclase, micas, olivine etc.

Hardness of minerals as expressed in Moh's scale

THANK YOU