PURE BENDING



Theory of simple bending (assumptions)

¢ Material of beam is homogenous and isotropic => constant E in all direction

¢ Young’s modulus is constant in compression and tension => to simplify analysis

¢ Transverse section which are plane before bending before bending remain plain
after bending. => Eliminate effects of strains in other direction

% Beam is initially straight and all longitudinal filaments bend in circular arcs =>
simplify calculations

¢ Radius of curvature is large compared with dimension of cross sections =>
simplify calculations

.

** Each layer of the beam is free to expand or contract => Otherwise they will

generate additional internal stresses



Bending in beams

Horizontal lines
become curved
Vertical lines remain

straight, yet rotate

After deformation

Before deformation

(b)
(a) Copyright © 2005 Pearson Prentice Hall, Inc.

Copyright © 2005 Pearson Prentice Hall, Inc.

Key Points:
1. Internal bending moment causes beam to deform.

2. For this case, top fibers in compression, bottom in
tension.
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Key Points:

1. Neutral surface — no change in length.

2. Neutral Axis — Line of intersection of neutral surface with the transverse section.
3. All cross-sections remain plane and perpendicular to longitudinal axis.



Deformations In A Symmetric Member In Pure Bending
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(a) Longitudinal, vertical section
(plane of symmetry)
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Stresses And Deformations In The Elastic Range
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A ssensasaena

Second Moments of Areas

m Moment of Inertia

— There are many important topics in
engineering practice that require evaluation
of an integral of the second moment of
area or moment of inertia of the type

Ix2 dA (1)



— Consider an area A located in the xy plane ™
as shown in the figure.
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; A 4

k O / 2
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— The quantities /_and I are referred to as
rectangular moments of inertia, since they
are computed from the rectangular
coordinates of the element dA.

— While each integral is basically a double
integral, it is possible in many applications
to select elements of area dA in the shape
of thin horizontal or vertical strips.



m Polar Moment of Inertia

/

— The second moment, or polar moment of

Inertia of an area with respect to an axis
perpendicular to the plane of the area Is
denoted by the symbol J.

Figure 11

m Polar Moment of
Inertia

J, =

4 (x?‘ + 3’ )dA

[ x2dA + j y2dA
A A

=1 +1,  (23)



~— = Radius of Gyration of an Area

— The radius of gyration of planar area has
units of length and is a quantity often used
for the design of columns in structural

mechanics.
— Provided the areas and moments of inertia

are known, the radii of gyration are
determined from the following formulas:

o (26a)

\[r 26b
k= \g (26¢)

=
I



h=6in. [0

gular cross section of width b and depth h, we have

where A is the cross-sectional area of the beam. This shows that, of two
beams with the same cross-sectional area A (Fig. 4.12), the beam with the
larger depth h will have the largersectmn modulus and, thus, will be the
more effective in resisting bending. {

= - - P wm A -

S as practicable. For example, in the case of a wooden beam with a rectan-

(4.19)



In the case of structural steel, American standard beams (S-beams) and
wide-flange beams (W-beams) are preferred to other shapes because a large
portion of their cross section is located far from the neutral axis (Fig. 4.13).

= C = p)
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(a) S-beam * (b) W-beam
Fig. 4.13

The deformation of the member caused by the bending moment M is
measured by the curvature of the neutral surface. The curvature is defined
as the reciprocal of the radius of curvature p, and may be obtained by
solving Eq. (4.9) for 1/p:

= (4.20)



But, in the elastic range, we have ¢, = o, /E. Substituting for ¢, into
(4.20), and recalling (4.15), we write

or

L o M
o 4.21
: (4.21)



[Example 4.01

A steel bar of 20 X 60-mm rectangular cross section is
sxected to two equal and opposite couples acting in the verti-
==l plane of symmetry of the bar (Fig. 4.14). Determine the
wzlue of the bending moment M which causes the bar to yield.

Sssume ¢, = 250 MPa. 20 mm
20 mm [ t
M’ M i SD*mm
= q 60 mm ° _
( 60 mm D&
Fig. 4.14 . { '
Fig. 4.15 [

Since the neutral axis must pass through the centroid C of
S cross section, we have ¢ = 30mm = 30 X 10-*m (Fig.
<~ 15 . On the other hand, the centroidal moment of inertia of
e rectangular cross section is

._ I — 3bh3 = (20 X 10-3 m)(60 X 10-3m)? = 360 X 10-% m*

k _L _360)(10-9“14 4 6 -
M=o, = S am (250 X 10°N/m?)

M =3000N+*m = 3kN *m




Example 4.02

An aluminum rod with a semicircular cross section of ra-
Zies r = 12 mm (Fig. 4.16) is bent into the shape of a circular
2rc of mean radius p = 2.5 m. Knowing that the flat face of the
== is turned toward the center of curvature of the arc, deter-
mime the maximum tensile and compressive stress in the rod.
e = 70 GPa./'

o
Fig. 4.17 i} \




The ordinate 7 of the centroid C of the semicircular cross
section is
4r  4(12 mm)

gy = ="5.09
y=3 mm

7 37

The neutral axis passes through C (Fig. 4.17) and the distance ¢
to the point of the cross section farthest away from the neutral
axis is

c=r—y =12mm — 509 mm = 6.91 mm

0 2.5m

Eﬂl

and, applying Hooke’s law,
0,, = Ee,, = (70 X 10° Pa)(2.76 X 10~3) = 193.2 MPa’

Since this side of the rod faces away from the center of curva-
ture, the stress obtained is a tensile stress. The maximum com-
pressive stress occurs on the flat side of the rod. Using the fact

that the stress is proportional to the distance from the neutral
axis, we write

5.09 mm

0, = — m(lg&i’, MPa) = —142.3 MPa

S =i

Ocomp = —



Properties of American Standard Shapes

A 755
o
Appendix C. Properties of Rolled-Steel Shapes T
(S! Units) d X X
S Shapes te
(American Standard Shapes) ? VI
y
o]
Flange
Web Axis X-X Axis Y-Y
Thick- | Thick-
Area Depth | Width ness | ness |/, S, r ? 85_ ry

Designationt A, mm* dmm | b,mm f,mm | t,.mm | 10°mm* 10°mm* mm |[10°mm' 10°mm® mm
S610 x 180 22900 622 204 21,7 203 1320 4240 240 | 349 341 39.0
158 20100 622 200 2717 15.7 1230 3950 247 | 325 321 399
149 19000 610 184 22.1 18.9 995 3260 229 1202 215 323
134 17100 610 181 22.1 159 938 3080 234 19.0 206 33.0
119 15200 610 178 22.1 12.7 878 2880 240 17.9 198 340
S510 X 143 18200 516 183 234 203 700 2710 196 |21.3 228 339
128 16400 516 179 234 168 658 2550 200 |19.7 216 344
112 14200 508 162 20.2 16.1 530 2090 193 | 126 152 20.5
98.3 12500 508 159 202 128 495 1950 199 |11.8 145 304
S460 < 104 13300 457 159 17.6 18.1 385 1685 170 104 127 27.5
814 10400 457 152 17.6 11.7 333 1460 179 8.83 113 288
S380 X 74 9500 381 143 15.6 14.0 201 1060 145 6.65 90.8 26.1
64 8150 381 140 15.8 104 185 97 151 6,15 85.7 27.1
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m Commonly Used Secoﬁd Moments of

Plane Areas
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m Example 3 ] 2"

— Determine the maximum flexural stress
produced by a resisting moment M, of

/

+5000 ft-Ib if the beam has the cross 6
section shown in the figure. I I ,
1 ~r
| S
First, we need to locate the neutral axis
from the bottom edge:
< 2 f T__uxEx6p42+3xzxﬁy_?z_q_
| e 2x6+2x6 24
(_ﬁ 5" 'Ttﬁ'ﬂ = 3.” ~TCDD‘1 - {) + 2 o 3 = 5" - -Tnm_u;
é" ¥ !
I Max. Stress = M, Vi

6.’! | .I.,{.



Find the moment of inertia 7. with respect
to the x axis using parallel axis-theorem:

6(2)° 2(6) 2
L= + +(6x2)2) + > +(2x6)3-1)

(5x12)(5) _ 2.21ksi
136

Max. Stress (com) =




= Example 4

A pair of channels fastened back-to-back
will be used as a beam to resist a bending
moment M, of 60 kKN - m. [f the maximum
flexural stress must not exceed 120 MPa,
select the most economical channel
section listed in Appendix B of the
textbook.

M

s i T However. we have two channels. hence
M A
O =i — > _S — _[
25 20
3
S = il =250x10"°m’ =250x10°mm’

 2(120%10°)




TABLE B4 Siandard Channels [SI Uniks)
e
__FLANGE Wb ANES X-X _AXIS F-F
Thick-  Thacks I 5 ! 5

Deug- Ares Wiideh Putns (521 il (o F (e i [
nataon® {rmm ) { P (L] (mm)  {rmm) ) mm'} {mm [ ] mm']  (mm)
C457 = k& 1 B30 4572 1067 159 178 11 1230 511 TAl L T} 39
% 77 SHT0 4572 1 %] 158 152 261 11480 I3 (¥ & KL 254
» Gl 710 4572 1.6 155 12.7 n IS5 &7 (. ™0 b 8]
64 #1130 4572 1001 159 114 Fxl | 0o 5 o0 6.9 F £ |
CARD = T4 SRS W0 944 165 182 i3 (0] 133 4 58 &l1.9 220
* 0l IR0 ) 16.5 13.2 145 782 ] 384 543 s |
X 50 [ ] -] Ehd [ /5] o2 151 [ 143 in 510 2.0
CHS = 45 S 4R RS i | 3o AT4 2 o 214 K 194
® T 4740 0N 74 127 98 5.0 s 13 186 MK 198
® 3 g iR 747 1.7 T2 £17 1n? Lk o % | M3
C254 5 45 Sy 540 1.0 100 171 429 19 B9 164 ad 170
EE—M—m—lu—n-u—wl—un hL-1 BG4 140 M1 173
— | 198 340 6 & 101 L1 128 159 @ 117 b1l 16
x 1 2098 1540 e 0 TN 61 Im, 7] [TE] 7] 190 1K1
CI19 % }o e 186 673 108 4 pLR ] 21 LR on 192 13
w22 845 1286 (AN 1S 1.2 .2 Bid LR 166 T8
20 158 1266 (K] 105 L1 ] 1959 174 BR.4 0733 157 e
200 x 18 3455 b 1 | (5] 99 124 183 L] 76 0EM 1.6 152
® 20 s 032 LLE 99 7 150 i4H 59 D637 140 156
X7 2180 2.2 74 LT L1 (BN (B! 790 A I28 59
Citsx 22 a1 IME ELE ] 93 10,6 1na 27 EAE ] nsn4 128 M3
x| nx Ims 557 93 KD ([ ina i 0 [T 1.5 s
x 18 &% 1778 LA 93 53 RET LT i1 0403 10.2 TF]
Cls2 = |9 4T 1524 4R k7 1Ll .M 0 540 LT 10X a3
% I 155 1524 1.7 LY i 613 K19 St . Bl 924 114
x 12 1550 1524 45N k7 5.1 LY L) 718 54 [ 2KH (1) 118
Cl127 % 13 1S 1270 419 Kl LN £ (] b1 L] [T 281 m 124
w10 1270 1270 L K1 4R 112 403 4 0109 619 15
o2 = 11 s [T a7 74 a2 191 174 1 180 582 14
] 028 10L& 42 15 4.7 1L.&0 Y& 104 ol 4 14
C6 w9 135 g 405 (L] a0 0862 ety a4 0127 4% 108
T [ 182 w0 e s o770 1 4 o103 K2 [ ]
= T8l 762 144 0% A8 s (L] X0 [T ) 114 [l

*C means channel, folkswed by the nominal depth in men, them ibe muss kg per meter of lengsh.



m Example 5

Determine both the
maximum flexural
tensile and the
maximum flexural
Gompressive 25mm o k- 150 mm
stresses produced

by a resisting -
moment of 100 kKN-m 100 mm
If the beam has the

cross section shown
In the figure.

250 mm




m Example 5 (cont'd) , | 250 mm —

Locate the neutral axis from _ I <

the upper edge: ] |
25mm —] | 150 mm

250><35(12.5_}+15{]x25{25+75]+ﬂ(25+]50+50]
Ve = > 100 mm

250%25+150x 25+ F100)
- 2.220.270.87
17.853.90

=124.36 mm



Calculate the moment of
inertia with respect to the x
axis:

- 250(124.36)°  (250-25)(124.36-25)° . 25(175-124.36)
% 3 3 3
4 2
, 7(100)"  7(100) (
64

225-124.36)

=172.243x10°mm* =172.243x10°m*

M,y 100x10°(275-124.36)x107
I 172.243x107°
_ 100x10°(124.36) x 107

© 172.243x10°

o, (ten) = =87.5 MPa

—72.2 MPa

Oy (COM)



120

t =8mm

SAMPLE PROBLEM 4.1

The rectangular tube shown is extruded from an aluminum alloy for which
oy = 150 MPa, o, = 300 MPa and E = 70 GPa. Neglecting the effect of fillets,
determine (a) the bending moment M for which the factor of safety will be 3.00,
(b) the corresponding radius of curvature of the tube.




C —_—
X

11

b

0.080 m

o=
m

0.064 m

Moment of Inertia, Considering the cross-sectional area of the tube as the
difference between the two rectangles shown and expressing all dimensions in

meters, we write

I = 4(0.080)(0.120)3

— £5(0.064)(0.104)?

I =552 % 10-m*

Allowable Stress. For a factor of safety of 3.00 and an ultimate stress of

300 MPa, we have

Oan =

oy _ 300 MPa

FS. —

3.00

= 100 MPa



/

Since g,y < oy, the tube remains in the elastic range and we may apply the results
of Sec. 4.4.

a. Bending Moment.  With ¢ = }(0.120 m) = 0.060 m, we write

_Mc o _I_ _ 55 x10m}
Gl = = T 0.060 m

(100 MPa)

M=920kN :m <«

b. Radius of Curvature. Recalling that E = 70 GPa, we substitute this
value into Eq. (4.21) and find :

1_M _ 9.2kN - m
p  EI ~ (T0GPa)5.52 X 10-m?

= 23.8 X 103 m-?

p=420m <«

Alternate Solution. Since we know that the maximum stress is o,y = 100 MPa,
we may determine the maximum strain ¢, and then use Eq. (4.9),

_ Oy _ 100MPa
% ="F — 70GPa _ ‘2O
o g i o B o G060
m= o PE e T 1499




\\
SAMPLE PROBLEM 4.2

A cast iron machine part is acted upon by the 3-kN * m couple shown. Knowing
that E = 175 GPa and neglecting the effect of fillets, determine (a) the maximum
tensile and compressive stresses in the casting, (b) the radius of curvature of the
casting.

M=3kN'm

Centroid. We divide the' T-shaped cross section into the two rectangles
shown and write

Area, cm? y, cm yA, cm? YSA = ZgA
1 | @9=18 | 5 90 Y(30) = 114 -
2 (4)3) =12 2 24 Y =38cm
o = F"E_‘-,',T.,:
——— 0] I2cm
4 cm e i Y
1 s
yz = 9 cm — e



1.2 em

]
I
e e

1.8 cmi

Centroidal Moment of Inertia. The parallel-axis theorem is used to deter-
mine the moment of inertia of each rectangle with respect to the axis x’ which
passes through the centroid of the composite section. Adding the moments of
inertia of the rectangles, we write

I, = 2(I + Ad?) = =(%bh® + Ad?)
= B(O2)* + (9 X 2)(1.2)* + {5(3)(4)* + (3 x 4)(1.8)
= §86.8 cm“
I = 868 x 10~ m*

a. Maximum Tensile Stress. Since the applied couple bends the casting
downward, the center of curvature is located below the cross section. The maxi-
mum tensile stress occurs at point A, which is farthest from the center of curva-
ture,

Mc, (3N -m)(0.022 m)
I ~ 868 x 10°m?

06, = +76.0MPa

0, =



Maximum Compressive Stress. This occurs at point B; we have

Mcy, (3kN - m)(0.038 m)

BT S T aae e 10 op = —131.3MPa
b. Radius of Curvature. From Eq. (4.21), we have .
E_ M 3kN +m
p  EI — (175GPa)(868 X 10-?m?)
=19.75 X 10-3m~! p=506m <«

/— Center of curvature




| BEAMS: COMPOSITE BEAMS;
/ STRESS CONCENTRATIONS

Composite Beams

s Bending of Composite Beams

— In the previous discussion, we have
considered only those beams that are
fabricated from a single material such as

steel.

— However, In engineering design there is an
Increasing trend to use beams fabricated

from two or more materials.



m Bending of Composite Beams

Concrete

Steel - -

1 Aluminum

"‘..-‘

> Steel

I-n. I _.._'._.'...A._...’_

— These are called composite beams.

— They offer the opportunity of using each of
the materials employed In their
construction advantage.

— Consider a composite beam made of metal
cover plates on the top and bottom with a
plastic foam core as shown by the cross
sectional area of Figure 26.




/ Foam Core

: — Figure 26

Metal Face

Plates N
— —

m
b

— The design concept of this composite
beam is to use light-low strength foam to
support the load-bearing metal plates
located at the top and bottom.

— The strain Is continuous across the
Interface between the foam and the cover
plates. The stress in the foam is given by

c,=E;e~0 (53)



— The stress in the foam is considered zero -
= because its modulus of elasticity E;is small
compared to the modulus of elasticity of
the metal.

—Assumptions:

 Plane sections remain plane before and
after loading.

» The strain is linearly distributed as shown
in Figure 27.

Y Y Y Y ¥ V¥ l

44444444444444 i |
M £ 0.
= - L Pl

it 5 e

Compressive Strain

Neutral Axis

Tensile Strain

Figure 27



/ — Using Hooke's law, the stress in the metal /

> of the cover plates can be expressed as

y
c,=¢k, =-—Fk, 53
p (33)
but £, / p=M/I_, therefore
m I ( )

x

— The relation for the stress is the same as
that established earlier; however, the foam
does not contribute to the load carrying
capacity of the beam because its modulus
of elasticity is negligible.

— For this reason, the foam is not considered
when determining the moment of inertia /..



— Under these assumptions, the moment of
inertia about the neutral axis is given by

T

— Combining I_Eqs 54 and 95, the maximum
stress in the metal is computed as

£

NA

| hfrm
=2A4d" =2 bt -

-~ Mlh, +2t,)

:%(hf +1

m

2

N

2

(33)

(56)



= Bending of Members Made of Several

-~ Materials

— The derivation given for foam core with
metal plating was based on the assumption
that the modulus of elasticity E; of the foam
Is so negligible that is, it does not
contribute to the load-carrying capacity of
the composite beam.

— When the moduli of elasticity of various
materials that make up the beam structure
are not negligible and they should be
accounted for, then procedure for
calculating the normal stresses and
shearing stresses on the section will follow
different approach, the transformed section
of the member.




—_—

= [ransformed Section

-~

— Consider a bar consisting of two portions of
different materials bonded together as
shown in Fig. 28. This composite bar will
deform as described earlier.

:II[ x* ,L-:, 1 }{_)
E N.A e O,

Figure 28 (a) (b) ()

— Thus the normal strain ¢, still varies linearly
with the distance y from the neutral axis of
the section (see Fig 28b), and the following

formula holds: 5

== (57)



—_—

— Because we have different materials, we
cannot simply assume that the neutral axis
passes through the centroid of the
composite section.

_—

— In fact one of the goal of this discussion will
be to determine the location of this axis.

We can write:
o,=E¢g = iR (5 83)

o,=E,e =— £a) (58b)
JD

From Eq. 58, it follows that

dF, = o,dd =51 14 (59a)
e,

dF, = o,dd = - £ 44 (59b)
J()




/ — But, denotlng by n the ratio E,/E, of the two—

moduli of elasticity, dF, can expressed as

(nE) e _E1(
o, 0

— Comparing Egs. 59a and 60, it is noted
that the same force dF, would be exerted
on an element of area n dA of the first
material.

dE, = ndA) (60)

— This mean that the resistance to bending of
the bar would remain the same if both
portions were made of the first material,
providing that the width of each element of

the lower portion were multiplied by the
factor n.

— The widening (if n>1) and narrowing (n<1)
must be accomplished in a direction
parallel to the neutral axis of the section.
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— Since the transformed section represents
the cross section of a member made of a
homogeneous material with a modulus of
elasticity E4,the previous method may be
used to find the neutral axis of the section

and the stresses at various points of the
section.

— Figure 30 shows the fictitious distribution of
normal stresses on the section.

:V"

.}}‘

Figure 30. Distribution of Fictitious Normal Stress on Cross Section



m  Stresses on Transformed Section

1. To obtain the stress o, at a point located
In the upper portion of the cross section
of the original composite beam, the
stress is simply computed from My/I.

2. To obtain the stress o, at a point located
In the upper portion of the cross section
of the original composite beam, stress g,
computed from My/I is multiplied by n.



—

—

s Example

A steel bar and aluminum bar are bonded
together to form the composite beam
shown. The modulus of elasticity for
aluminum is 70 GPa and for streel is 200
GPa. Knowing that the beam is bent about
a horizontal axis by a moment M = 1500 N-
m, determine the maximum stress in (a)
the aluminum and (b) the steel.

M Steel 20 mm

Aluminum
40 mm

< 30 mm -~




—

~ First, because we have different materials,

—

S SESSSSSESSSS e
we need to transform the section into a
section that represents a section that is
made of homogeneous material, either
steel or aluminum.

We have
E 200 -
n=—t="—=2857
E, 70
30mm x n = 85.7] mm
Steel 20 mm Aluminum

Aluminum 40 mm Aluminum
<30 mm ~ <30 mm -

Figure 31a Figure 31b



Consider the transformed section of Fig.
- 31b, therefore

10(85.71x20)+40(30x40) _

V. = 2.353 mm from top
i (85.71x20)+(30x 40) 1

85.71(22.353) (85.71-30)(22.353—20)°
Im = 3 3

+20-22353) ) i
, 30(40 : 53) 852 42%10° mm* = 8524210~ m’*
85.7] mm
ye=22.353 mm 20 mm
NA. P

40 mm

5 30m >



A

a) Maximum normal stress in aIurr;i\rxium
occurs at extreme lower fiber of section, —
that is at y = -(20+40-22.353) = -37.65

mm.
_ __My_ 1500(-37.65x10)
“ I 85242x107°

—66.253x10°Pa

=+66.253 MPa (T)

b) Maximum normal stress in stelel occurs
at extreme upper fiber of the cross
section, that is. at y =+ 22.353 mm.

My 500(22.353x107°
:—ni:—(z.sm)hoo( =p ) 1128510
I 852.42x10

O-Sr

=112.8 MPa (C)



m Reinforced Concrete Beam

— An important example of structural
members made of different materials is
demonstrated by reinforced concrete
beams.

— These beams, when subjected to positive
bending moments, are reinforced by steel
rods placed a short distance above their
lower face as shown in Figure 33a.



/ Figure 32

—— 10 ® ¢ vy I Parmmannmnnnng
n A,

(2) (b) (c)
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— Concrete is very weak in tension, so it will
crack below the neutral surface and the
steel rods will carry the entire tensile load.

— The upper part of the concrete beam will
carry the compressive load.

— To obtain the transformed section, the total
cross-sectional area A of steel bar is
replaced by an equivalent area nA..

— The ratio n is given by

- Modulus of Elasticity for Steel  E

Modulus of Elasticity for Concrete E

c

5

— The position of the neutral axis is obtained
by determining the distance x from the
upper face of the beam (upper fiber) to the
centroid C of the transformed section.




— Note that the first moment of transformed _—
/ section with respect to neutral axis must be

: zero.

— Since the the first moment of each of the
two portions of the transformed section is
obtained by multiplying its area by the
distance of its own centroid from the
neutral axis, we get

v

(bx)—(d —x)n4,)=0

N | =

or

—bx" +nd.x—ndd=0
0% +nA.x —nA, (61)

— Solving the quadratic equation for x, both
the position of the neutral axis in the beam
and the portion of the cross section of the
concrete beam can be obtained.



The neutral axis for a concrete beam is
found by solving the quadratic equation:

1
bez +nd,x—nd.d=0| (62)
. | nA



s Example
- 5
/ A concrete floor slab is reinforced by g'in
diameter steel rods placed 1 in. above the
lower face of the slab and spaced 6 in. on
centers. The modulus of elasticity is 3x10°
psi for concrete used and 30 x10° psi for
steel. Knowing that a bending moment of
35 kip-in is applied to each 1-ft width of the
slab, determine (a) the maximum stress in
concrete and (b) the stress in the steel.




— Transformed Section

* Consider a portion oj the slab 12 in. wide, In
which there are two 2 -in diameter rods having a
total cross-sectional area

12 in. —| |" .
s .
X K A =2 7 =0.614m"
e C _ E, 30x10°
4-x e 10 - —=10
E_ 3x10

nd.=10(0.614)=6.14in"



— Neutral Axis

* The neutral axis of the slab passes through the
centroid of the transformed section. Using Eq.

62:

Quadratic
Formula

- -b+~b’ —4ac

2a

x; =1.575 take
x, =—2.599

2
3

| 2
—(12)x* +6.14x-6.14(4)=0

6x> +6.14x-24.56 =0

bx’ + nd.x—nd.d =0

E’ x=1.5/5mn



— Moment of Inertia

* The centroidal moment of inertia of the
transformed section is

12 1n.
A 12(1.575) . e
1.575 NAZI= ( . ) +6.14(2.425)" =51.7in*
4 1in. = _ =
C
2.425
6.14 1n-

Maximum stress in concrete:

My  35(1.575 _
- ey ey
I 51.7

Stress in steel:

=+16.42 ks1(T)

My 35(—2.425
o :—ni:—(lO) o)
4 51.7

s




4.57 Knowing that the bending moment in the reinforced concrete beam shown is
+150 kip-ft and that the modulus of elasticity is 3.75 x 10 psi for the concrete and
30 x 10° psi for the steel, determine (g) the stress in the steel, (5) the maximum
stress in the concrete,

PROBLEM 4.57

30 in 3 in.

L]
+ R
- . \
A -
L] L] 4 .‘
h
- ' £
.
. .
f

I Y




SOLUTION

- Es | 3ox0¢ |
"= e T3asxee - 80

A, = 4 %dz = 4(3)(13" = 3.1%416in"

nAg = 25133 it



?“-"Ithe-

axis |© - ‘

le 12 Alg
P }

l




Locore +he nevtved euvis

(30X (% +2.8) + 12 x X
~(25.133)1e.5 - x) = O

ISOXx + 878 + GxX = 419.69 +265.133 ¥ = o

x4+ 1715133 x -39.€9 = o

Sofve for x K = — 175,133 + '/(|75-l337r+(41(&)(3ﬁ.6‘1)
W&

6.5 - x = l6.2.75 in,

= Q. 225 in,



L = imbh’+ At = @YY + (3oks ) (2.725) = 1426, 3 in

I,= b= $(12X022sY = o, i

L= nAd, = (25133X16.275)" = GeST.1 jn*
I = L+I,+I, - 8083.5 in'

6= = % where M= Iso kp-#t = 1300 kip i

(@) Steed n=8.0 | y= 16275
5 =~ (80)Y(3003(-1¢.27¢)

2083.5 =. 29.0 ksi
(b)) Conerete n=10, y= 5215 i
& = - (1.,0)(130Q)(5.225)  _ _ | 163 ke

3083 .5



40 cm
]: 300N 300N 300N 40N

200 cm

7 * 2000 mm

The reinforced concrete beam shown is subjected to a load pattern given in the figure. Knowing
that the modulus of elasticity is 37.5 GPa for the concrete and 300 GPa for the steel, determine
a) the stress in the steel b) the maximum stress in the concrete.
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