TABLE 9.3. Summary of the results obtained from a three point test cross between $A B C / a b c \times a b c / a b c$

Genotypic classes	Phenotypic classes	Assumed frequencies	Remarks
ABC/abc	ABC	349 \}	Parental types.
abc/abc	abc	360	
Abc/abc	Abc	114	Single crossover between A and B.
aBC/abc	aBC	116	
ABc/abc	ABC	128 \}	Single crossover between B and C.
abC/abc	$a b C$	124	
AbC/abc	AbC	5	Double crossover between A and C .
aBc/abc	aBc	4	
Total		1200	

2. Recombination (\%) of Three point Test Cross:

Crossing over percentage between genes A and $B=(114+116)+(5+4) / 1200 \times 100=230+9 / 1200 \times$ $100=19.92 \%$

Crossing over percentage between genes B and $C=(128+124)+(5+4) / 1200 \times 100=252+$ $9 / 1200 \times 100=21.75 \%$

3. Gene Sequence of Three Point Test Cross:

Hence, distance between genes A \& B = 19.92 map units
Distance between genes $\mathrm{B} \& \mathrm{C}=21.75$ map units

Distance between genes A \& C=21.75 $+19.92=41.67$ map units
$\underset{~}{\substack{\mathrm{~A} \\ \longleftrightarrow \\ \longleftrightarrow \\ 4.92}}$

4. Coefficient of Coincidence in Three point Test Cross:

Coefficient of coincidence $=$

Observed no. of double crossovers/Expected no. of double crossovers

1. Observed double crossovers $=9 / 1200 \times 100=0.75$
2. Expected double crossovers $=$ Product of two single crossovers between $A B \& B C$ values $/ 100$ $=19.92 \times 21.75 / 100=4.33$

Coefficient of coincidence $=0.75 / 4.33=0.17$

Coefficient of interference $=1-$ Coefficient of coincidence $=1-0.17=0.83$

