CrystalGraphics

CrystalGraphics

PROJECT RISK

By Atul Pandey Shrija Konda Akanksha Sinha Harsha Aditi

INTRODUCTION

- Through this presentation we will try to identify the underlying sources of risk and explore the consequences.
- Risk is inherent in almost every business decision. More so in capital budgeting decisions as they involve cost and benefits extending over a long period of time during which many things can change in unanticipated ways.
- The following slide suggests ways to handle risk in capital budgeting.

SOURCES OF RISK

Risk

- Project risk
- Competitive risk
- Industry-specific risk
- Market risk
- International risk

MEASURES OF RISK

-	NAV	PROBABILITY
	200	0.3
	600	0.5
	900	0.2

PROBABILITY WEIGHTED NPV: $E(NPV) = \sum Pi NPVi$ = 0.3X200+0.5X600+0.2X900

= 540 (expected value)

RANGE= highest value – lowest value =900-200 = 700

CrystalGraphics

Standard deviation

σ

$$= [\sum_{x \to 1} Pi(x-x)*2]*1$$

= 249.8

VARIANCE = square of Std Deviation = 249.8*2= 62400Coefficient = std dev/ expected value of variance = 249.8/540= 0.46SEMI = $\sum PiDi*2$ VARIANCE = 0.3(200-540)*2= 34680.

SENSITIVITY ANALYSIS

Sensitivity of NPV to variations in the value of key variables

			Range	NPV		
Key variables	Pessimistic	Expected	Optimistic	Pessimistic	Expected	Optimistic
Investment (m)	24	20	18	-0.65	2.60	4.22
Sales (m)	15	18	21	-1.17	2.60	6.40
VC as % of sales	70	66.66	65	0.34	2.60	3.73
Fixed cost (m)	1.3	1	0.8	1.47	2.60	3.33

MCHYStalo applies

SCENARIO ANALYSIS

Risk

- In this analysis several variables are varied simultaneously. Most commonly 3 scenarios are considered.
- 3 scenarios are:
 - Expected scenario
 - Pessimistic scenario
 - Optimistic scenario

Cont...

Rs. In millions	Pessimistic scenario	Expected scenario	Optimistic scenario	
investment	24	20	18	
Sales	15	18	21	
Variable cost	10.5(70%)	12(66.7%)	13.65(65%)	
Fixed cost	1.3	1	0.8	
Depreciation	2.4	2	1.8	
Pre tax profit	0.8	3	4.75	
Тах	0.27	1	1.58	
Profit after tax	0.53	2	3.17	
Annual cash flow from operations	2.93	4	4.97	
NPV(PVIFA:12%,10 years)	(7.45)	2.6	10.06	
CrystalGra			CrystalGraphic	

LIMITATIONS

Risk

- Based on the assumption that there are few extreme scenarios. the economy does not necessarily lie in 3 discrete states -Recession, Stability and Boom.
- It expands the concept of estimating the expected values. thus in a case where there are 10 inputs the analyst has to estimate 30(3*10) expected values to do the analysis

BREAK EVEN ANALYSIS

Risk

- This analysis helps in knowing how much should be produced and sold at a minimum to ensure that the project does not "lose money".
- BEP occurs when
- Total revenue = Total cost

TYPES OF BREAK EVEN ANALYSIS

- Accounting break even analysis:
- Break even in accounting terms is like a stock that gives a return of 0% without considering the time value of money
- A project that merely breaks even in accounting terms will have a negative NPV.
- <u>Financial Break-even Analysis</u>: It takes into account the time value of money and is only concerned with the NPV and not accounting profits.

MANAGING RISK

Risk

A common way to Start with small Gather more A lower price increases modify the risk is to information about the product and later the potential change the proportion expand as the market and demand, but also raises of fixed and variable market grows. technology before the break-even level cost. taking the plunge. Pricing Fixed and Sequential RISK Improving RISK RISK RISK Strategy Variable cost Investment Information Enter into long-term Partnership between Reducing the Derivative instruments arrangements with two or more companies dependence on debt like options and futures suppliers, employees, le to achieve a common lowers risk. can be used for nders and customers. purpose. managing risk. Financial Strategic Long-term Derivatives RISK RISK RISK RISK Alliance Leverage Arrangements CrystalGraphics

PROJECT SELECTION UNDER RISK

Judgmental Evaluation

Payback Period Requirement

Risk Adjusted Discount Rate Method

Certainty Equivalent Method

CrystalGraphics

CrystalGraphics

JUDGMENTAL EVALUATION:

The decision is made on the basis of risk and return characteristics of a project without using any formal method.

PAYBACK PERIOD REQUIREMENT:

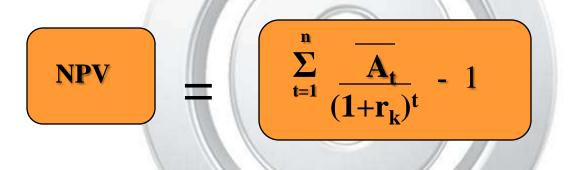
If an investment is considered more risky, a shorter payback period is required even if the NPV is positive or IRR exceeds the hurdle rate.

RISK ADJUSTED DISCOUNT RATE METHOD:

This method calls for adjusting the discount rate to reflect project risk.

rate

Risk-adjusted discount rate



premium

- If project risk is equal to the risk of existing investment of the firm, the discount rate used is the average cost of capital of the firm.
- If project risk is greater than the risk of existing investment of the firm, the discount ٠ rate used is higher than the average cost of capital of the firm.
- If project risk is less than the risk of existing investment of the firm, the discount rate used is less than the average cost of capital of the firm.

Risk

The project is accepted if its NPV is positive:

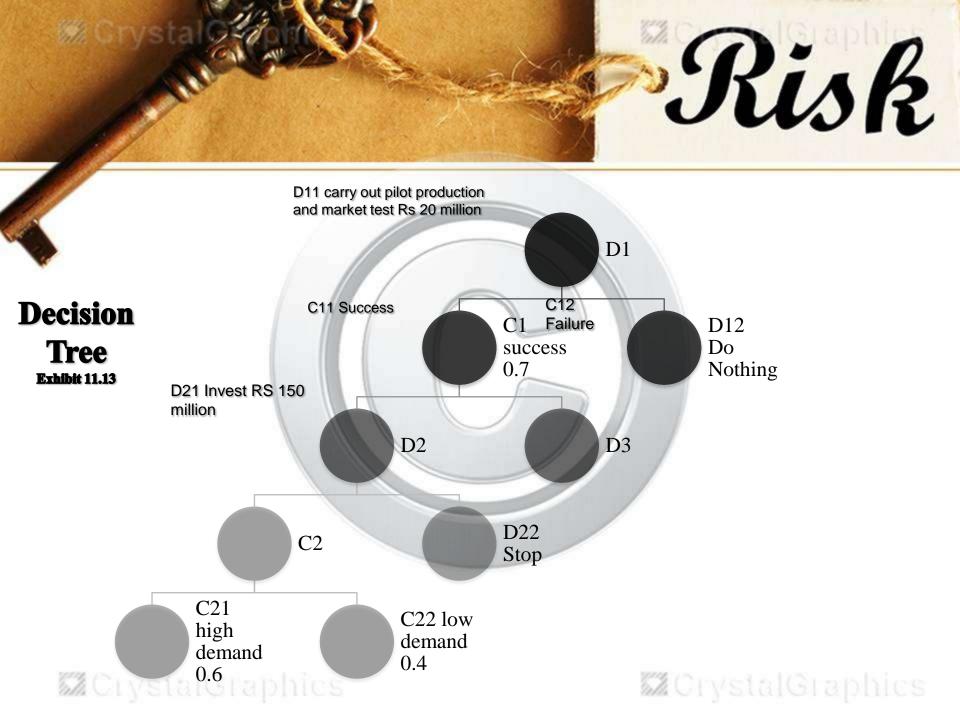
Where, NPV is the net present value of project k, A_t is the expected cash flow for year t, and r_k is the risk adjust discount rate of project k,

Simulation Analysis

- Procedure
 - 1. Model the project. The model of the project shows how the net present value is related to the parameters and the exogenous variables.

- 2. Specify the values of parameters and the probability distributions of the exogenous variables.
- 3. Select a value, at random, from the probability distribution of each of the exogenous variable.
- 4. Determine the net present value corresponding to the randomly generated values of exogenous variables and pre-specified parameter values.
- 5. Repeat 3 & 4 steps to get a large number of simulated net present values
- 6. Plot frequency distribution of the net present value.

CrystalGraphics


Issues in Applying simulation

- What should the output be?
- Is project variability enough?
- How should the extreme values be used?
- How should the results of simulation be used?

Decision Tree Analysis

Risk

- Identify the Problem & Alternatives.
- Delineating the Decision Tree.
- Specifying the probabilities & Monetary Outcomes.
- Evaluating various decision alternatives.

CERTAINITY EQUIVALENT METHOD

- It is a method which is used to calculate a guaranteed return that someone would accept, rather than taking a chance on a higher, but uncertain, return.
- Under this method NPV is calculated as
- NPV = sum($\alpha t^*At/(1+i)^t$)-I
- αt=certainty equivalent coefficient(0.5-1)
- At=expected cash flow
- i=risk free interest rate
- I=initial investment

METHODS TO INCORPORATE RISK

Risk

- <u>Conservative estimation of revenues</u>: Revenues expected from a project are conservatively estimated to ensure the viability of the project
- <u>Safety margin in cost figures</u>: A margin of safety is included in estimating cost figures
- <u>Flexible investment yardsticks:</u> The cut off point for an investment varies according to the judgment of management about the riskiness of the project

CrystalGraphics

E.g.:

Raw material availability70%Power availability60%Freedom from competition80%Overall certainty = (70+60+80)/3 = 70%

Cont...

- Judgment on three point estimates:
- Three estimates are developed for one or more aspects of the proposed investment.
- E.g.:
- Rate of return:
 - Pessimistic
 - Likely
 - optimistic

CrystalGraphics