

Protein Metabolism

Protein Biosynthesis

- Proteins are assembled from amino acids using information encoded in genes
- Each protein has its own unique amino acid sequence that is specified by nucleotide sequence of the gene coding
- Genetic code is a set of three nucleotide sets called codon and each three nucleotide combination designates an amino acid
 - AUG (Adenine-uracil-guanine) is the code for methionine

Transcription

- DNA contains four nucleotides and the total number of possible codons is 64
- Redundancy in genetic code with some amino acids specified by more than one
- Genes encoded in DNA are first transcribed into messenger RNA (mRNA) by enzymes such as RNA polymerase
- mRNA is used as a template for protein synthesis by the ribosome

Transcription

- The DNA template opens, and RNA polymerase moves down one strand in the 3' → 5' direction inserting nucleotides into a growing strand of RNA
- Ribonucleotides come from ATP, CTP,GTP, UTP and follow base pairing
- Synthesis of RNA proceeds in the $5' \rightarrow 3'$ direction

Protein Biosynthesis

- Process of synthesizing a protein from mRNA template is known as translation
- mRNA is loaded onto ribosome and is read three nucleotides at a time by matching each codon to its base pairing anticodon located on a transfer RNA molecule (tRNA)
- tRNA molecule carries amino acid corresponding to the codon it recognizes

Translation

- Enzyme aminoacyl tRNA synthetase charges the tRNA molecule with the correct amino acid
- Proteins are always biosynthesized from N- terminus to C-terminus

Protein Breakdown

- Key physiological process in all forms of life wherein proteins are converted to amino acids and then catabolised
- Complete hydrolysis of polypeptide requires mixture of peptidases (Exopeptidases and endopeptidases)
- In normal human beings about 90% of energy requirement is met by oxidation of carbohydrates and fats and 10% is met by oxidation of carbon skeletons of amino acids

Amino Acid Catabolism

- Removal of α amino group is important reaction in the breakdown
- Important reactions involved are:
- Deamination
- Transamination
- Oxidative deamination
- Nonoxidative deamination

Amino Acid Catabolism

- <u>Transamination</u> is the starting point for amino acid metabolism (shuffling of amino groups from amino acids)
- Involves transfer of an amino group from an amino acid to a keto acid
- Involves the inter-conversion of a pair of amino acids and a pair of keto acids catalyzed by transaminases (transferases)

Transamination

- Transaminases require pyridoxal phosphate (PLP – coenzyme derived from vitamin B6)
- Aspartate and alanine transaminases
 make a significant contribution
- Transamination is reversible and diverts the excess amino acids to energy
- Lysine, threonine, proline, and hydroxyproline do not participate

Amino Acid Catabolism

- Amino transferase reactions occurs in two stages:
 - Pyridoxal phosphate is covalently attached to amino transferases by a Schiff's base linkage resulting in formation of pyridoxamine phosphate

 The amino group attached to pyridoxamine phosphate is transferred to a different keto acid yielding a new amino acid and releases pyridoxal phosphate

Deamination

- Removal of amino group from amino acids as ammonia is deamination
- Carbon skeleton of amino acids is converted to keto acids
- Deamination may be either oxidative or non-oxidative
- Deamination and transamination occur simultaneously involving glutamate as the central molecule

Oxidative Deamination

- Is the liberation of free ammonia from the amino group of amino acids coupled with oxidation that occurs in liver and kidney
- In transamination, the amino groups of most amino acids are transferred to α keto glutarate to produce glutamate
- Glutamate rapidly undergoes oxidative deamination catalysed by glutamate dehydrogenase (GDH) to liberate NH₃

Oxidative Deamination

- GDH utilizes either NAD⁺ or NADP⁺ as a coenzyme
- Conversion of glutamate to αketoglutarate occurs through the formation of intermediate αiminoglutarate
- L-amino acid oxidase and D-amino acid oxidase are flavoproteins, possessing FMN and FAD respectively

Oxidative Deamination

- FMN and FAD act on corresponding amino acids (L or D) to produce α -keto acids and NH₃
- Oxygen is reduced to H_2O_2
- Keto acids may be oxidized to generate energy or serve as precursors for glucose and fat synthesis

Non-Oxidative Deamination

- Serine, threonine, and homoserine are hydroxy amino acids that undergo nonoxidative deamination catalysed by PLP-dependent dehydrases producing respective α-keto acids liberating NH₃
- Cysteine and homocysteine undergo deamination coupled with desulfhydration to give keto acids, liberating NH₃ and H₂S

<u>Urea Cycle</u>

- Also known as ornithine cycle that occurs in ureotelic organisms
- Converts highly toxic ammonia to urea
- First metabolic cycle to be discovered by Hans Krebs abd Kurt Henseleit
- The urea cycle primarily takes place in liver and to a lesser extent in kidneys

Function of urea cycle

- Amino acid catabolism results in ammonia production
- In species including birds and most insects, ammonia is converted into uric acid or its urate salt that is excreted in solid form
- In humans, ammonia is converted to urea in liver, that enters the bloodstream and finally excreted by kidneys

Urea Cycle

- Citrulline is synthesized from carbamoyl phosphate and ornithine by ornithine transcarbamoylase
- Citrulline is transported to cytosol
- Arginosuccinate synthase condenses citrulline with aspartate to produce arginosuccinate with utilization of ATP
- Arginosuccinase cleaves arginosuccinate to give arginine and fumarate

<u>Urea Cycle</u>

- Arginase cleaves arginine to yield urea and ornithine; ornithine enters mitochondria for reuse in urea cycle
- Urea cycle is irreversible and consumes 4 ATP (2 ATP for synthesis of carbamoyl phosphate, 1 ATP for synthesis of Arginosuccinate which equals 2 ATP

Overall equation:

2NH₃ + CO₂ +3ATP + H₂O.....>urea +fumarate +2ADP +4pi + AMP