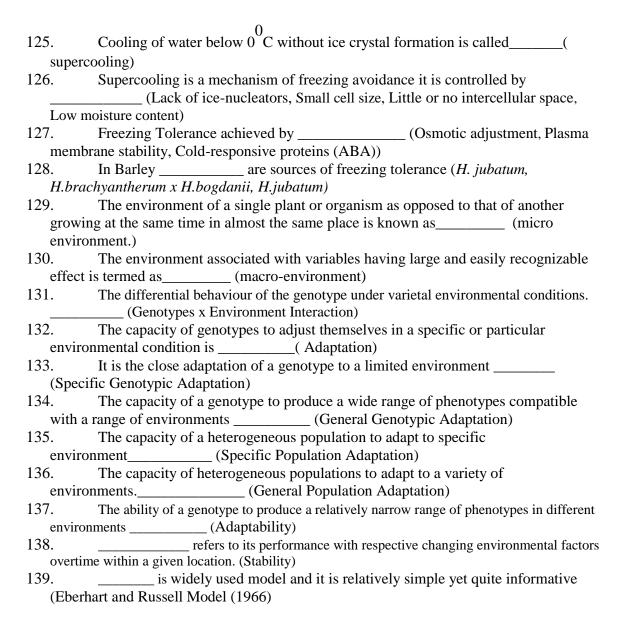
Crop Improvement-II (Fibre, Sugar, Starches, narcotics, vegetables, fruits and flowers) -ASPG 3205


Credit hour: 1+1 One mark questions

1	Origin of diploid wheat is (Asia minor)
2	is probably the ancestor for all the cultivated wheats (<i>T. boeoticum</i>)
	International Maize and Wheat improvement Centre (CIMMYT) is located at
	(Mexico)
	Directorate of Wheat Research (DWR) is located at(Karnal)
	The semi dwarf varieties of wheat have been developed through the use of Japanese
٠.	line as a source of dwarfing gene (Norin 10)
6.	Origin of Sugarcane (Saccharum officinarum)(India)
	is also known as noble cane (S. officinarum)
	The wild progenitor for S. officinarum is (S. robustum)
	The major sugarcane varieties which are found to be resistant to red rot disease are
	(Co 1148, 1336, 6304, Co 5659, CoS 698)
10.	Indian Institute of Sugarcane Research located at(Lucknow)
	According to Vavilov (1926) origin of chickpea is (S.W. Africa and
	Mediterranean)
12.	Sunflower (<i>Helianthus annuus</i>) chromosome number is (2n=34)
13.	Directorate of Oil seed Research (DOR) is located at (Hyderabad)
14.	Seeds of mustard (Brassica nigra) contain per cent oil (40 – 45)
15.	In Brassica removal oftoxin make them edible (Erucic acid)
16.	National Research Centre for Mustard (NRCM) is located at (Bharatpur-
	Rajasthan)
17.	Barley scientifically called as (Hordeum vulgare)
	Barley chromosome number is(2n=14)
19.	Origin of Berseem <i>Trifolium alexandrium</i> is(Egypt)
	Nicotiana tabacum $(2n=48)$ is a native of (America)
	Okra Lady's finger (<i>Abelmoschus esculentus</i>) chromosome number is(2n=130)
22.	Origin of Okra is (India)
23.	Origin of mari gold (Tagetes erecta L) isMexico
24.	Chromosome number of mari gold (<i>Tagetes erecta</i> L) is (2n = 24)
25.	Origin of Banana (Musa paradisica) is(Tropical Asia)
26.	Adverse conditions for crop growth caused by biological or environmental factors
	is (Stress)
	Adverse effects due to pests and diseases abiotic stresses(Biotic)
	Adverse effects on host due to environmental factors(Abiotic)
	Plant effected by a disease or which can accommodate pathogen(Host)
	An organism that produces the disease(Pathogen)
	The ability of a pathogen to infect a host strain(Pathogenicity)
	Capacity of a pathogen to incite a disease(Virulence)
33.	Strains of a single pathogen species with identical or similar morphology but differ in
o :	pathogenic capabilities(Physiological race)
34.	Strains of a pathogen classified on the basis of their virulence to known resistance
	genes present in the host (Pathotype)

35.	Severe and sudden out break of disease beginning from a low level of infection(Epidemic)
36.	The ability of susceptible host plants to avoid attack of disease due to environmental conditions(Disease escape)
37.	Early maturing varieties of groundnut may escape disease (Tikka)
	The ability of the plants to tolerate the invasion of the pathogen without showing
	much damage(Disease endurance or tolerance)
39.	The ability of plants to withstand, oppose or overcome the attack of pathogens
	(Disease Resistance)
40	Resistance is largely controlled by characters (inherited)
	When the host does not show the symptoms of disease it is known as
	reaction (immune)
12	Resistance to Jassid attack in cotton has been achieved with the (hariness of
42.	varieties)
12	Resistance of grape to is highly correlated with the acidity of cell sap.
43.	
11	(powdery mildew)
44.	More secondary thickening of the cell walls of resistant potato varieties resists the
4.~	mechanical puncture of the pathogen (<i>Pythium</i>)
	The first study on genetics of disease resistance was done by(Biffen)
46.	In Oligogenic inheritance the disease resistance is governed by (one or few
	major genes)
	The concept of gene for hypothesis was first developed by (Flor)
48.	Flor based on his studies of host pathogen interaction in flax rust caused by
	(Malampsora lini). proposed gene for gene hypothesis
	introduced the term vertifolia effect (Vander plank)
50.	Resistance to in oats was induced by irradiation with x-rays or thermal
	neutrons (Victoria blight)
51.	Early varieties of groundnut introduced from USA have been resistant to
	(leaf spot tikka)
52.	Kalyanasona and Sonalika wheat varieties introduced from(CIMMYT,
	Mexico)
53.	Kufri Red potato is selection from (Darjeeling Red round)
54.	In Rice are resistant to Blast (Co25, Co26)
55.	In Wheat resistant to all three rusts (NP 809)
	In Wheat resistant to Yellow rust (NP 785, NM86)
57.	In Wheat resistant to Black rust (NP 789)
	In Wheat resistant to Brown rust (NP 783, NP 784)
59.	In Sugarcane resistant to Red rot (Co 419, Co 421, Co 527)
	In Cotton resistant to Wilt (Vijay, Kalyan, Suyog)
	In Groundnut resistant to Tikka leafspot (Ah 45)
	In Chilliare Mosaic resistant (Pusa red, Pusa orange)
	Strains of a species of an insect pest, differing in their ability to attack different
	varieties of the same host species(Biotypes)
64.	Insects feed on a vide range of hosts avoiding few plant species(Polyphagy)
	Insects live on one taxonomic unit only(Oligophagy)
	Insects may live on many species in one part of the year and on few in another part of
٠.,	the year are(Seasonal oligophagy)
67	Insects avoid all hosts except one particular species or variety are(
57.	Monophagy)
68	Examples of Polyphagy(Scales & moths)
50.	(Seales & mons)

	Examples of Oligophagy(Hessianfly on wheat) Examples of Monophagy(Boll weevil on cotton)
71.	Examples of Seasonal oligophagy(Aphids)
	Host Varieties that are unattractive or unsuitable for colonization / oviposition show mechanism (Non preference)
73.	refers to an adverse effect of feeding on a resistant host plant on the
7.4	development and/or reproduction of the insect pest (Antibiosis)
/4.	Rice varieties tolerant to stem borer/gall midge produce to compensate
75	yield losses (additional tillers) Early maturing cotton varieties escape infestation (pinkboll worm)
	In cotton Hairiness of leaves is associated with resistance to (Jassids)
77.	sprouts are less favored than green varieties by butterflies (Red cabbage, Red leaved brussel)
	Solid stem in wheat confers resistance to (wheat stem sawfly)
	Leaf hairs of <i>solanum sps</i> . secrete gummy exudates in which
	get trapped in these exudates (Aphids Colorado beetles)
30.	Exudates from secondary trichomes of leaves have antibiotic
	effects on alfalfa weevil. (Medicago disciformis)
	In rice, high silica content in shoots gives resistance to (Shoot borer)
	Examples for Oligogenic insect Resistance (In rice plant leaf hopper)
	Examples for Polygenic insect Resistance (In wheat to cereal leaf beetle)
	Examples for cytoplasmic insect Resistance (Resistance to European corn borer in maize)
85.	of G. hirsuturn are good sources of resistance to Jassids. (SRT 1,
_	Khand waz; DNJ 286 and B 1007)
86.	Jassid resistances is known in wild relatives of cotton (G.
	tomentosum; G.anomalum and G.armourianum)
	The Cry gene of is the most successful example for recombinant DNA technology (<i>Bacillus thuringiensis</i>)
88.	Pedigree is used for the transfer of(oligogenic characters)
89.	Back cross is used for the transfer of(Polygenic characters)
90.	Glabrous strains of cotton are resistant to but susceptible to Jassids (Bollworms)
91.	Cotton varieties resistant to boll worms (G 27, MCU 7, LRK 516)
92.	In Rice resistant to leaf hopper (Vijaya)
93.	In Rice resistant to Stemborer (TKM 6, Ratna)
94.	In Rice resistant to BPH (Vajram, chaitanya, Pratibha)
	Scarcity of moisture which restricts the expression of full genetic yield potential of a plant (Drought)
	The ability of crop plants to grow, develop and reproduce normally under moisture stres(Drought resistance)
	Ability of a genotype to mature early, before occurrence of drought(Drought Escapes).
98.	The ability of plants to maintain favourable water balance even under stress Drought Avoidance)

99. Traits contribute to dehydration avoidance(Leaf rolling, folding and	
reflectance narrow leaves, increased pubescence on aerial organs, presence of awns,	
osmatic adjustment of stomata, cuticular wax, increased water uptake)	
100. Reduced Transpiration is achieved by (Increase in concentration of	
Abscisic Acid (ABA), closure of stomata, ABA plays role in reduction of leaf expansio	n)
101. Ability of plants to produce higher yield even under low water potential (Drought Tolerance)	
102. In cereals drought tolerance generally occur during phase	
(reproductive)	
Drought tolerant cultivars exhibit (Better germination, seedling	
growth and photosynthesis)	
Drought tolerance may be because of (high proline accumulation,	
maintenance of membrane integrity)	
105. Sum total of avoidance and Tolerance is(Drought Resistance)	
106. In Wheat drought resistant species are(Aegilops. Variabilis, Aegilops.	c
speltoide, Aegilops umbellulata, Aegilops squarrosa)	,
107. In sugarcane is drought and saline tolerant (<i>Sacharum</i> .	
spontaneam)	
•	-
	,
i.e. water logging)	
109. Water logging leads to (deficiency of O ₂ , build up of Co ₂ ,	
Ethylene and other toxic gases and this leads to reduction in aerobic respiration.)	
110. Characteristics of plants in response to water logging stress	
(Reduced growth / elongation., Chlorosis, senescence and abscission of lower leaves,	
Wilting & leaf curling, Hypertrophy (increase in size of organ due to increase in cell size	e)
111. Mechanisms of water logging tolerance(Adventitious	
root formation on lower part of stem, Aerenchyma formation,)	
112. Ideotype for flooded areas are(Capacity to carry out functional	
activity at low O2, Capacity to synthesis food rapidly, Narrow, medium long and dark	
green leaves with high sugar and protein content)	
113. The ability of plants to prevent, reduce or overcome injurious effects of soluble	
salts present in their root zone(Salt Tolerance)	
114. Problem of salinity can be overcome by (Soil reclaimation, use of	
Resistant varieties)	
115. Highly salt tolerant crop(Sugarbeat, sunflower, barley, cotton)	
116. Moderately salt Tolerant crop (rye, soghum, wheat, safflower)	
117. moderately salt Folciant crop (Fig., sognatin, wheat, salnower) 117. moderately salt sensitive crop (Rice, corn, foxtail millet, cow pea)	
· · · · · · · · · · · · · · · · · · ·	
119. Symptoms of plants to salt stress (Retardation / cessation of growth	,
Necrosis, Leaf abscession, Loss of turgor)	
120. Central Soil Salinity Research Institute located at(Karnal-Haryana)	
121. When temperatures remain aboveit is called chilling (>0 $^{\circ}$ C to <10 $^{\circ}$ -15 $^{\circ}$ C)
122. When temperature. remain below it is called Freezing (.<0°C)	
123. Effects of chilling stress on plants (Reduced germination, Poor seedling)	. ~
establishment, Stunted growth, ABA accumulation)	ıg
	ıg
124. Mechanisms of chilling tolerance (Membrane lipid un-saturation,	ıg
124. Mechanisms of chilling tolerance (Membrane lipid un-saturation, Increased chlorophyll accumulation, Improved fruit / seed set, Pollen fertility)	ıg

