

Risk & Return

What is Return?

"Income received on an investment plus any change in market price, usually expressed as a percent of the beginning market price of the investment "

Components of Return

Yield

The most common form of return for investors is the periodic cash flows (income) on the investment, either interest from bonds or dividends from stocks.

Capital Gain

The appreciation (or depreciation) in the price of the asset, commonly called the Capital Gain (Loss).

Total Return

Total Return = Yield + Price Change

$TR = [D_{t} + (P_{t} - P_{t-1})]/P_{t-1}$

where,

TR = Total Return

D_t = cash dividend at the end of the time period t

- P_t = price of stock at time period t
- P_{t-1} = price of stock at time period t-1

Total Return

Example

Ali purchased a stock for Rs. 6,000. At the end of the year the stock is worth Rs. 7,500. Ali was paid dividends of Rs. 260. Calculate the total return received by Ali.

Solution

$$TR = [D_{t} + (P_{t} - P_{t-1})]/P_{t-1}$$

Total Return = Rs.[260+(7,500-6,000)]Rs. 6,000 = 0.293 = 29.3%

Expected return

- The investor cannot be sure of the amount of return he/she is going to receive.
- There can be many possibilities.
- Expected return is the weighted average of possible returns, with the weights being the probabilities of occurrence

Expected return

Formula:

$E(R) = \Sigma X^* P(X)$

where **X** will represent the various values of return, **P(X)** shows the probability of various return

Example

Suppose, if you knew a given investment had a 50% chance of earning return of Rs.10, a 25% chance of earning a return of Rs. 20 and there is a 25% chance of bearing a loss of Rs.10.

What is your expected return?

TOTAL		7.5
-10	0.25	-2.5
20	0.25	5
10	0.50	5

Relative Return

The relative return is the difference between absolute return achieved by the investment and the return achieved by the benchmark

For example, the return on a stock may be 8% over a given period of time. This may sound rather high, BUT,

If the return on the designated benchmark is 20% over the same period of time, then the relative return on that stock is in fact -12%.

Inflation adjusted return

- Also called real rate of return
- Inflation-adjusted return reveals the return on an investment after removing the effects of inflation.

Formula

Inflation - Adjusted Return = $\frac{(1 + \text{Return})}{(1 + \text{Inflation Rate})} - 1$

Example

- Return on Investment = R = 7%
- Inflation rate = IR = 3%
- Inflation Adjusted Return =?

Solution:

Inflation Adjusted Return = [(1+R)/(1+IR)] - 1

- = [(1+R)/(1+IR)] 1= [(1+0.07)/(1+0.03)]-1 = 1.03883 - 1
- = 0.0388
- = 4% approximately

Alternate Solution

- A simple approximation for inflation-adjusted return is given by simply subtracting the inflation rate from the rate of return
- Inflation Adjusted Return = R IR

So far we've discussed.....

- Basic concept of return
- Components of Return
- Expected Return
- Relative Return
- Real Rate of Return

What is Risk?

Risk is the variability between the expected and actual returns.

Interest Rate Risk

It is the risk that an investment's value will change as a result of change in interest rates. This risk affects the value of bonds more directly than stocks.

Market Risk

Market Risk refers to the variability in returns resulting from fluctuations in the overall market conditions

Financial Risk

It is the risk associated with the use of debt financing. The larger proportion of assets financed by debt, the larger variability in returns, other things remaining equal.

Liquidity Risk

An investment that can be bought or sold quickly without significant price concession is considered liquid.

The more uncertainty about time element and the price concession, the greater the liquidity risk.

Foreign Exchange Risk

When investing in foreign countries one must consider the fact that currency exchange rates can change the price of the asset as well. This risk applies to all financial instruments that are in a currency other than your domestic currency.

Country Risk

This is also termed political risk, because it is the risk of investing funds in another country whereby a major change in the political or economic environment could occur. This could devalue your investment and reduce its overall return. This type of risk is usually restricted to emerging or developing countries that do not have stable economic or political arenas.

SENSITIVITY ANALYSIS

SENSITIVITY ANALYSIS

- Sensitivity analysis is an approach for assessing risk that uses several possible return estimates to obtain a sense of variability among outcomes
- One of the tools used to perform this analysis is "RANGE"

RANGE

Range is calculated by subtracting the pessimistic (worst) outcome from the optimistic (best) outcome.

Formula:

RANGE = Maximum Value – Minimum Value

Example

Suppose that you expect to receive the following returns on a particular asset.

Economic Situations	Expected Returns	
Deep recession	600 —	→ Min
Mild recession	605	Return
Normal	612	
Minor Boom	626	Мах
Major Boom	635 —	Return

Solution

Range = Max Value – Min Value = Rs.635 – Rs.600 = 35 rupees

Higher the range, the more risky the asset is.

Standard Deviation

- Standard deviation is a tool for assessing risk
 associated with a particular investment.
- * Standard deviation measures the dispersion or variability around a mean/expected value.

Formula: $\sigma = \sqrt{\Sigma X^2 * P(X) - [\Sigma X * P(X)]^2}$

Example

Outcomes	Return on Stock A (X)	Probability P(X)	Return on Stock B (Y)	Probability P(Y)
Outcome 1	13	0.25	7	0.25
Outcome 2	15	0.50	15	0.50
Outcome 3	17	0.25	23	0.25

Solution - (S.D for Stock A)

	X	Ρ(Χ)	X * P(X)	X ² * P (X)
	13	0.25	3.25	42.25
	15	0.50	7.50	112.50
	17	0.25	4.25	72.25
	Total	1.00	15.00	227
S.D	$= \sqrt{\Sigma X^2 * P(X)}$	100		

S.D =
$$\sqrt{227 - (15)^2}$$
 = **1.41 rupees**
Solution - (S.D for Stock B)

Y	P(Y)	Y* P(Y)	Y ² * P (Y)
7	0.25	1.75	12.25
15	0.50	7.50	112.50
23	0.25	5.75	132.25
Total	1.00	15.00	257

 $\mathbf{S.D} = \sqrt{\Sigma \ \mathbf{Y}^2 \ast \mathbf{P}(\mathbf{Y}) - [\Sigma \ \mathbf{Y}^* \mathbf{P}(\mathbf{Y})]^2}$

S.D =
$$\sqrt{257 - (15)^2} = 5.66$$
 rupees

	Solution			
E & J	STOCK A	STOCK B		
Expected Return	15 rupees	15 rupees		
Steophydrigeviateotw the same expected	o stodk s, we see that I returns. But the SD o	both ક જિદ્દ kg Prave or risk is different.		

The S.D of stock B > S.D of stock A

We can say that the return of stock B is prone to higher fluctuation as compared to stock A

Coefficient of Variation

CV is a measure of relative risk.
It tells us the risk associated with each unit of money invested.
Formula:

 $CV = \sigma_{(x)} / E(X)$

Example

- Stock A has an expected return of Rs. 15 and an expected variation (S.D) of Rs. 4
- Stock B has an expected return of Rs. 20 and an expected variation (S.D) of Rs. 5.
- Which stock is riskier?

Solution

	STOCK A	STOCK B
Expected Value (Mean)	15	20
Standard Deviation	4	5
Formula	σ / E(A)	σ / E(B)
Calculation Stock A is 0.27	whicl= 4/15 ns th	at aga = 5/20 very
C.V pee invested, there is a	risk o ó.27 paisas	0.25

- The CV of Stock B is 0.25 which means that against every rupee invested, there is a risk of 25 paisas.
- Since CV(A) > CV(B), so Stock A has more risk.

Risk and Return of Portfolio

PORTFOLIO

- Portfolio: A grouping of financial assets such as stocks, bonds, etc
- A good portfolio consists of financial assets that are not strongly positively correlated

Portfolio Return

STOCK	RETURN	S. D	Weightage of
	(R)	(s)	Investment (W)
A	16%	15%	0.50
Assume tha	t the correlation co	efficient between A	and B is 0.4
B	14%	12%	0.50

What is the expected return of the portfolio comprising of stock A and B?

The formula for expected return of a portfolio is:

 $E(R_P) = \Sigma W_i * R_i$

Hence, in the expected return of the portfolio in this case is:

= (0.5)(0.16) + (0.5)(0.14) = 0.08 + 0.07 = 0.15 = 15%

Portfolio Risk

 $\sigma_{\mathbf{P}} = \sqrt{\sum_{A=1}^{n} \sum_{B=1}^{n} W_A W_B \sigma_{AB}}$

Where,

σ_{P} = Risk of a portfolio

- W_A is the weight (investment proportion) for the Stock A in the portfolio,
- W_B is the weight (investment proportion) for the Stock B in the portfolio,

 σ_{AB} is the covariance between returns of Stock A and Stock B

STOCK – A (col 1)

STOCK – B (col 2)

STOCK A (row1)

STOCK B (row2)

 $W_A W_A \sigma_{A.A}$

 $W_B W_A \sigma_{B.A}$

W_A W_Bσ_{A.B}

 $W_B W_B \sigma_{B,B}$

1/2

How to calculate covariance...?

Formula:

$COV_{AB} = r_{A.B} * \sigma_A * \sigma_B$

Where,

 $r_{A,B}$ = correlation between A and B σ_A = standard deviation of Stock A σ_B = standard deviation of Stock B

Calculating Co-variances...

 $Cov_{A,A} = \sigma_{AA} = r_{A,A} * \sigma_A * \sigma_A$ = (1.00)(0.15)(0.15) = 0.0225

 $Cov_{A,B} = \sigma_{AB} = r_{A,B} * \sigma_{A} * \sigma_{B}$ = (0.4)(0.15)(0.12) = 0.0072

 $Cov_{B,A} = \sigma_{BA} = r_{B,A}^* \sigma_B^* \sigma_A$ = (0.4)(0.12)(0.15) = 0.0072

 $Cov_{B,B} = \sigma_{B,B} = r_{B,B} * \sigma_{B} * \sigma_{B}$ = (1.00)(0.12)(0.12) = **0.0144** $\sigma_{P} = \begin{cases} W_{A} W_{A} \sigma_{A,A} & W_{A} W_{B} \sigma_{A,B} \\ W_{B} W_{A} \sigma_{B,A} & W_{B} W_{B} \sigma_{B,B} \end{cases}$

1/2

1/2

(0.5)(0.5)(0.0025) (0.5)(0.5)(0.0072)(0.5)(0.5)(0.0072) (0.5)(0.5)(0.0144)

0.000625 0.001800 0.000180 0.003600

2

Adding the rows and columns, we get 0.01345. Hence, the risk of the portfolio is: $\sigma = (0.01345)^{1/2}$ $\sigma = 11.597\% = 11.6\%$ approx.

Solution

This value of S.D (11.6) is a measure of the risk associated with the portfolio consisting of Stock A and Stock B.

Note that the amount of portfolio risk is lesser than the individual risk of stock A and B.

CV – A better representation of risk

STOCK	EXPECTED	STANDARD	Coefficient of
	RETURN	DEVIATION	Variation
	(R)	(σ)	= σ/ E(R)
Α	16%	15%	= 15/16 = 0.93

Hence if the investor make an investment only in Stock A, the gisk against each rupee invested would be 93 paisas. For stock B alone, it would be almost 85 paisas but if half of the money is invested in stock A and Malf of it is invested in stock B'then for each the e the investor shall have to bear a risk of only 77 paisas. Hence one can reduce the risk by means of a portfolio.

DIVERSIFICATION

Diversification is basically used as a tool to spread the risk across the number of assets or investments.

The traditional theory on diversification "Don't put your eggs in one basket"

A diversified portfolio should consist of securities that are not perfectly positively correlated.

A portfolio should contain some high-risk and some low-risk

securities

How much risk reduction is possible?

How many different securities are required in order to minimize the risk factor?

For a company, a portfolio containing 20-25 securities is suitable.

For an individual, a portfolio of almost 7 different securities is considered good.

Systematic Risk

Systematic risk is the one that affects the overall market such as change in the country's economic position, tax reforms or a change in the world energy situation.

Unsystematic Risk

The risk which is independent of economic, political and all other such factors. It is associated with a particular company or industry.

- The investor can only reduce the "unsystematic risk" by means of a diversified portfolio.
- The "systematic risk" cannot be avoided.

- Since the investor takes systematic risk, therefore he should be compensated for it.
- Return/Compensation depends on level of risk To measure the risk, we use the Capital Asset Pricing Model.

CAPITAL ASSET PRICING MODEL

CAPM

CAPM was developed in 1960s by William Sharpe's.

This model states the relationship between expected return, the systematic return and the valuation of securities.

CAPM

Sharpe found that the return on an individual stock or a portfolio of stocks should equal its cost of capital.

$$\mathbf{R} = \mathbf{R}_{f} + (\mathbf{R}_{m} - \mathbf{R}_{f})\boldsymbol{\beta}$$

Where,

R = required rate of return of security

R_f = risk free rate

- **R**'_m = expected market return
- B^{"=} beta of the security
- $R_m R_f = equity market premium$

Characteristic Line

A characteristic line is a regression line that shows the relationship between an individual's security returns and returns on market portfolio. In order to draw this line we will have to find the returns that an investor is getting in excess of the risk free rate.

Y e a r	Excess Return on Stock ABC	Excess Return on Market Portfolio	Y e a r	Excess Return on Stock ABC	Excess Return on Market Portfolio
1	4	5	11	7	13
2	5	10	12	-1	4
3	-4	-6	13	-6	-1
4	-5	-10	14	-6	9
5	2	2	15	-2	-14
6	0	-3	16	7	-4
7	2	7	17	2	15
8	-1	-1	18	4	6
9	-2	-8	19	3	11
10	4	0	20	1	5

Scatter

Diagram

- β The slope of characteristic
 line is called beta.
- β Beta represents the systematic risk.
- β Beta measures the change in excess return on the stock over the change in the excess return on the market portfolio.

- For beta = 1: The risk associated with the individual stock is the same as the risk associated with the market portfolio.
- For beta > 1: It shows that the stock has more unavoidable risk as compared to the market as a whole. This kind of stock is known as aggressive investment.
- For beta < 1: The stock is less risky as compared to the stocks in the market portfolio. This kind of stock is known as defensive investment.

As mentioned earlier, according to CAPM, return is calculated by:

$$R = R_f + (R_m - R_f) * \beta$$

Suppose the risk free rate of the security is 6%. The market rate is 12% and the beta is 1.25, Then the required rate of return for the security would be

> R = 6 + (12 - 6) * 1.25 R = 6 + 7.5 R = 13.5%

Reconsider the above example but suppose that the value of B = 1.60. Then the return would be:

> R= 6 + (12 - 6)*1.60 R= 6 + 9.6 R= 15.6%

So, we see that greater the value of beta, the greater the systematic risk and in turn the greater the required rate of return.

SECURITY MARKET LINE

A security market line describes the linear relationship between the expected return and the systematic risk as measured by beta.

Required Return

Beta = Systematic Risk
What if the expected and required rate of return are not the same??

Then there is disequilibrium.

UNDERPRICED & OVERPRICED STOCKS

SYSTEMATIC RISK / BETA

Bibliography

Principles of Managerial Finance by Lawrence.
G. Gitman

- Investments by Charles P Jones
- Financial Management by Van Horne
- ✓ <u>www.investopedia.com</u>

