

Principles and Preparation of fish paste products

1. Minced meat technology

2.

Surimi production selection of raw materials Manufacturing of surimi Role of cryoprotectants Grading of surimi

Surimi and its processing

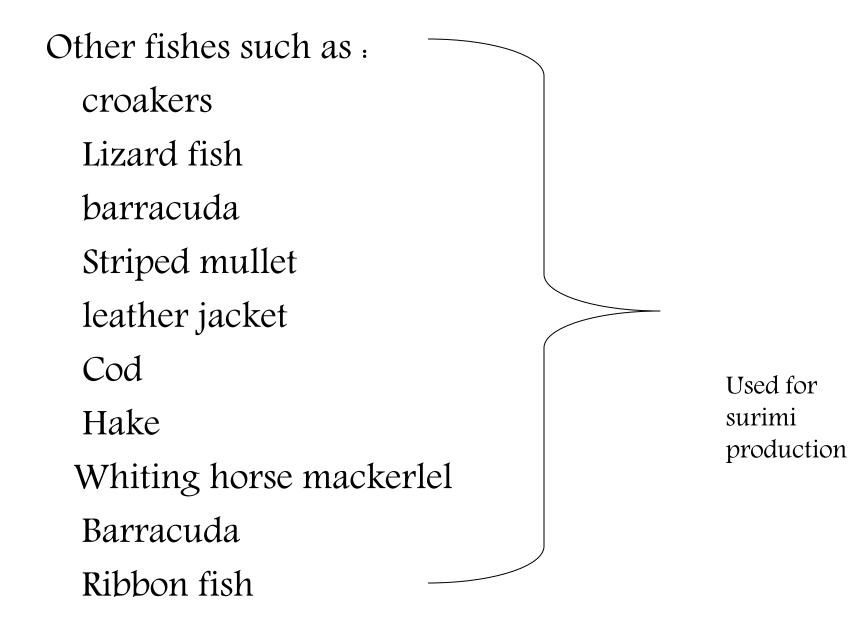
Definition.

Surimi is a Japanese word means ground fish paste

- Machanically deboned fish meat minced, water washed, refined, mixed with cryoprotectants for prolonged shelf life during frozen storage.
- surimi is a uniquely functional food ingredient made of fish proteins and used in surimi seafood products.
- consists of fish proteins that are refined through heading, gutting and mincing the fish, then washing, removing water, and freezing the

- remaining protein.
- Good quality surimi is odorless and has a creamy white appearance. Surimi has excellent gelling properties so that it can be formed into various shapes.
- Different from minced fish
- Minced fish is raw material for surimi.
- Minced meat is washed with water to remove water soluble components, blood, pigments and odour bearing compounds results in surimi.

- Because of its high gel strength, surimi is used as intermediate in processing in several value added products
- They have texture, flavour and appearance such as shrimp, lobster tail, scallop meat and crab leg.
- First surimi production in 1960 & technology developed by Japanese.
- Fish muscle dark & white
- Active swimmers dark muscle more than sluggish fish.
- Dark muscle higher haeme & lipid content
- Affects color & flavor of surimi


- White color & bland flavor preferred for surimi.
- White flesh & low fat fish desirable.
- Raw surimi is a wet concentrate of myofibrillar protein & possess enhanced gel strength, elasticity, water holding, fat binding & other functional properties.
- Recovery, conc., protection of myofibrillar protein is important in surimi processing.

1.Selection of raw material:

• Economic when made from low value, abundant species with year round availability.

- Allaska Pollock (*Theragra chalcogramma*) is best suited for surimi production.
- followed by Pacific whiting in manufacture of surimi.
- *Nemipterus japonicus* is best tropical species for production of surimi.

The important criteria in selection of fish for surimi

- Low cost
- White fleshed & non oily.
- Round year availability
- Good gelling ability

- As fresh as possible (less blood & gut content)
- Fresh fish lower degree of autolysis.
- Small pelagic fishes like sardine and mackerel are abundantly available in tropical waters
- Surimi processed out of it is of inferior quality due to high fat content

- High myoglobin content
- Presence of dark muscle.
- Rotary freeze method, pressure washing & density gradient used to remove dark meat.

Precaution.

- Washing with sodium bi carbonate removes most of the fat.
- Always post rigor fish is preferred to extract minced meat from fish.
- 2. Dressing the fish : Heading Gutting

Filleting

- 3. Meat-bone seperation & mincing:
- Deboning: seperation of bones/fins/scales/skin.
- Dia of the perforation ranges from 4–7 mm.
- Mincing using meat mincer
- 4. Washing.

Leaching/ bleaching: Cyclic washing of minced meat with chilled water 2-4° C(non salt)

Objectives of water washing is to remove

- Water soluble sarcoplasmic proteins
- Protease enzymes

- Blood & pigment
- Lipids
- Haeme pigments responsible for lipid oxidation
- Increase gel strength (concentrate actin & myosin)
- Reduce microbial load.
- Hard water contains ions of calcium and magnesium which cause textural degradation and ion of manganese will affect colour during storage.
- Fresh water has pH in a range 6.5 to neutrality, water used also should have pH near to that, to facilitate retension of its original water holding capacity.

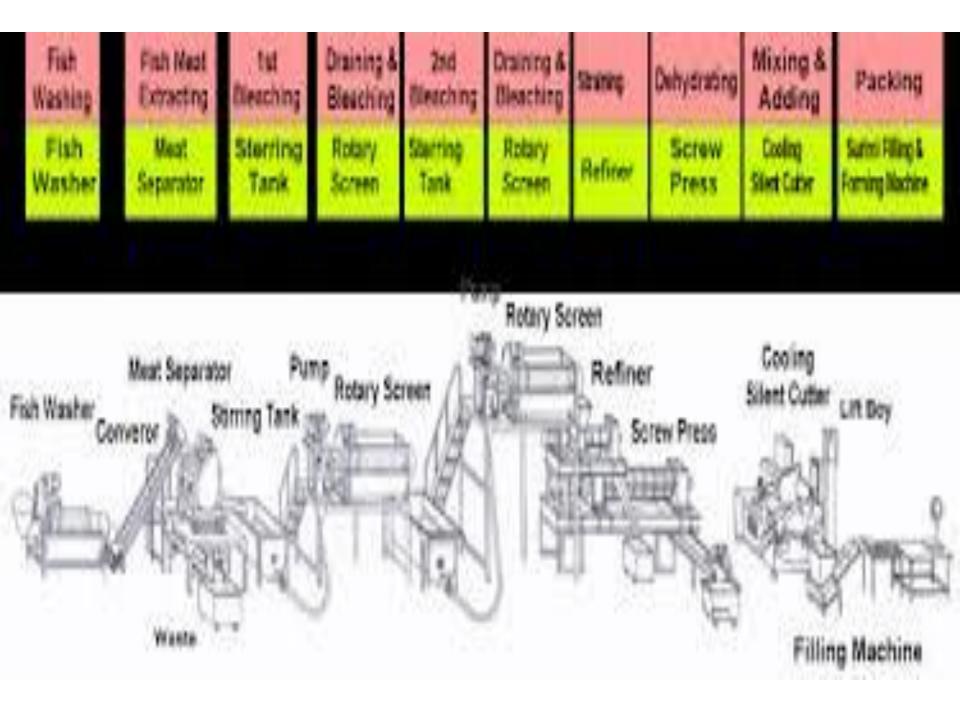
- Salt may added at the level of 0.1–0.2% in last washing which aids in dewatering.
- Ionic strength /concentration of inorganic salts of leaching water affects swelling tendency of minced meat.
- Greater the ionic strength of water easier is to remove water from meat and vice versa.
- 1. Batch process.

Fish to water ratio is 1:4 to 1:5. on board washing if done then 1:2 to 1:3 ratio can

be used.

- In case of lean fishes 1 to 2 washings and for fatty fishes 4–5 washings are used.
- During washing, slurry must be agitated to aid easy removal of water and WSP.
- Each washing cycle should be of 4–5min. Agitation is done for 3 min.
- Slurry is allowed to settle and water decanted.
- 2. Continuous Process:

Water is sprayed over the minced fish and the meat is kept in contact with water for 30–40 min.


- Moisture content may increase to 85% after washing and permitted level is 79% for surimi.
- 5. Dewatering:
- After washing the water content of meat has to be reduced to about 80%.
- Dewatering can be done by using screw press / centrifugation
- 6. Refining/ straining.
- The process of removal of any connective tissue, bones, skin, scales and dark muscle from washed mince
- Can be performed before/after dewatering
- Mince should have 80–90% of moisture.

7. Addition of cryoprotectants.

The dewatered mince is mixed with sucrose(4%), sorbitol(4%) and poly phosphate(0.2–0.3%) which prevent protein denaturation during frozen storage. For blending equipments used is silent cutter.

8. Filling, packaging & Freezing.
Blocks of surimi (10 kg) packed in polythene bags.
Frozen at -40° C in a contact plate freezer and stored at -20° C.

- Role of cryoprotectant.
- 1. Sugar (4%) :
- Prevents denaturation
- Increase the surface tension of water and increases amount of bound water
- Prevent drip loss
- Stabilize the proteins.
- 2. Poly phosphate (0.2 -0.3%)
- Prevents drip loss
- Improve water holding capacity

- 3. Sodium chloride (2–12%)
- Solubulize surimi or myofibrillar proteins
- Permits the elastic and firm gel after cooking

<2%, may not sufficient to solubulize

- >12%, cause dehydration
- Nacl at lower concentration enhances water uptake and swelling of surimi.

4. Starch:

- Enhances the textural property by increasing gelatinization
- Maintains stability.

Based on the cryoprotectant added, surimi is classified into 3 types

- 1. Salt free Muen surimi
- 2. Salted Kaen Surimi
- 3. Raw Nama Surimi
- 1. Muen surimi.

water washed minced meat with sugar & polyphosphate

2. Kaen surimi

Water washed minced + salt + Sugar

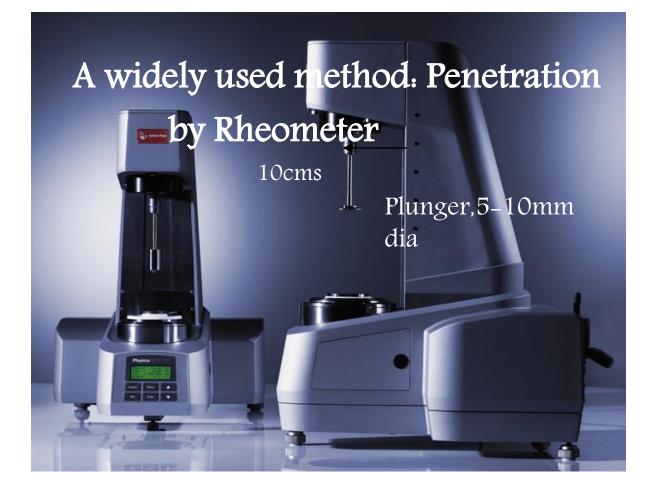
- 3. Nama Surimi
- Prepared on limited scale

Quality assessment of surimi.

Compositional quality :

- moisture
- Protein
- Fat
- Moisture content was determined by measuring the weight loss of a representative amt of surimi after drying in an oven at 105°C for about six hours.

Physical & sensory quality :


• pH, viscosity, brightness, color, appearance, flavor, water holding capacity

- pH was measured by adding 10g of surimi to 90ml of distilled water, blending it in a food processor and measuring the slurry with a pH meter.
- The foreign element test (Suzuki, 1981) was carried out by noting the number of foreign elements (such as scales, black or white membranes etc.) above 1mm long.
- results were scored on a 10-point scale.
- Functional quality :

Japanese system classifies surimi according to the

- Gel forming capacity
- Strength of ashi

- textural & rheological property
- Measurement of gel strength :

- Gel strength measurement :
- Most widely method for gel strength measurement is by a Rheometer.
- Instrument has a plunger with a sphere of 5–10 mm dia at the tip of 10 cm long rod.
- Plunger pressed on to the surface of sample until it penetrates.
- The sample gets gradually deformed & broken.
- A kymograph used to show stress strain curve from which strength of ashi is calculated.
- Gel strength is expressed in g/cm.

Determination of whiteness.

- Expressed as Percentage
- Comparing with standard
- lovibond pure whiteness of 93%.
- Hunter lab colorimeter used to
- Measure Whiteness.
- Changes in color on surface of

- surimi is measured using CIE L*, a* & b* using spectrophotometric color difference meter (NF333, Nippon Denshoku Industries Co., Ltd., Tokyo, Japan).
- The L, a, and b values were measured using a D65 light source with a viewing field angle of 2.

• The color results are expressed as the mean value of at least 10 samples.

Organoleptic tests.

- Folding test & Teeth cutting test
- Carried out by trained panelist.
- Both the methods depend on the person judging.
- (i) Folding test :
- Slice of prepared sample folded in half & then in quarter.

- Based on extent of cracking the product is given grade AA, A, B, C etc.
 - Teeth cutting test :
 - Springiness of sample is felt by biting slice between upper & lower incisors and then scoring based on hedonic scale from 10 to 1.
 - Torsion test for gel strength.
- Gels cut into 3 cm length & milled into hourglass shape with min dia of 1 mm at center.
- Each gel placed in modified torsion apparatus.
- Texture of each gel measured by twisting sample at 2.5 rpm until structure failure occurs.

- Water holding capacity.
- Slice of surimi placed between two filter papers & pressed by a small oil-compressor under fixed pressure or centrifuged at 10000 rpm for 15 min at 15° C.
- Wt difference of sample b4 & after pressing is expressed as % reflecting amt. of water pressed out.
- Texture Profile Analysis.
- Surimi gels of 3 cm equilibrated at room temp for 30 min in plastic bag to avoid dehydration before texture analysis.

- Texture determined using TA-XT2i stable microsystem texturometer.
- TPA performed using cylindrical probe of 50 mm.
- Samples compressed at 50% initial height using compression speed of 2mm/sec.
- Data for Hardness, springiness, cohesiveness, chewiness, adhesiveness etc. can be obtained.

- Microbial aspect :
- Deboner & Mincer possible causes of contamination
- Subsequent washes may help in removal of these
- Addition of salt & additives suppress their growth
- Chilled temp & wash water may harbour some psychrophilic bacteria.
- Frozen storage of surimi & heat treatments in product manufacturing prevent this.
- Food poisoning may attribute to surimi.
- A proper combination of heat processing, packaging & use of preservatives is the key to increase shelf life