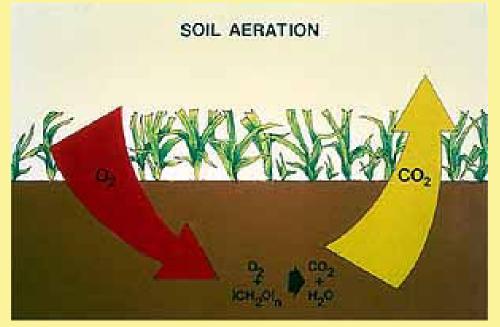



#### ASAC 1101 : FUNDAMENTALS OF SOIL SCIENCE (2+1)

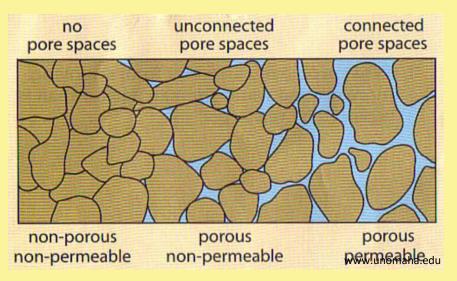

Level : B.Sc (Ag), I semester

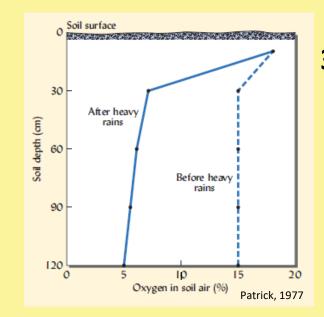
Dr. PEDDA GHOUSE PEERA S.K. SOIL SCIENCE AND AGRICULTURAL CHEMISTRY M.S.SWAMINATHAN SCHOOL OF AGRICULTURE,CUTM, PARLAKHEMUNDI

> **Topic** Soil Air

# **Soil aeration**

# □Soil aeration facilitates exchange of gases between soil and atmosphere





http://www.personal.psu.edu

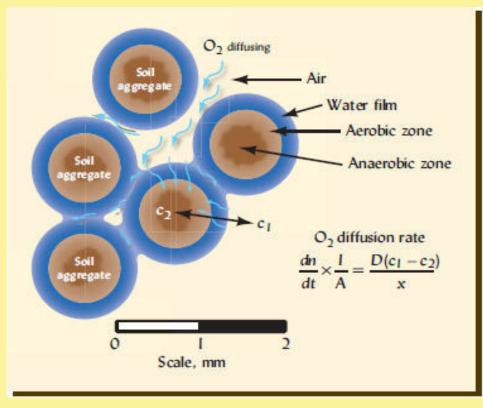
# **Soil aeration**

#### Oxygen availability in soil is determined by

#### **1.** Macro porosity





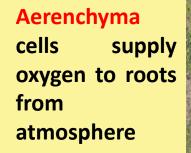

#### 3. Soil water content

**2.** O<sub>2</sub> consumption by organisms

# **Soil aeration**

#### • Oxygen availability in soil is determined by

3. Soil water content

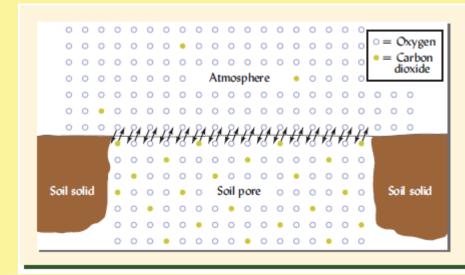



#### **Excess moisture**



Ray R. Weil

# Adaption for poor aeration in waterlogging conditions






Hydrophytes are adapted to grow in waterlogged conditions
 Have above water roots to supply oxygen

# **Process of gaseous exchange**

- Gaseous exchange occurs by mass flow and diffusion
- □ Mass flow caused by fluctuations in soil moisture content that force air in and out
- In diffusion, movement of a gas and its direction is governed by partial pressure of the gas
- **Partial pressure is the pressure exerted by an individual gas in a mixture of gases**
- **D** Partial pressure gradient causes movement of gases from high to low concentration



# **Calculation of partial pressure**

What is the partial pressure of oxygen?

Air pressure = 100 kPa (~1 atm)
 Concentration of oxygen in air = 21%= (0.21 L/L) by vol
 Hence, partial pressure of oxygen = 21 kPa

## **Characterizing soil aeration**

#### **1.** Gaseous composition of soil air

**Soil air composed of various gases** 

**\Box**Soil air has same amount of N<sub>2</sub> as atmosphere (78%)

 $\Box O_2$  is less(<u>~20%</u>) in soil than atmosphere and decreases further with depth

 $\Box CO_2$  is more in soil (0.35%) (10 times more concentrated than atmosphere)

**Lack of oxygen causes anaerobic conditions** 

 $\Box$ Under such conditions, concentration of CH<sub>4</sub>, H<sub>2</sub>S and C<sub>2</sub>H<sub>4</sub> increases

# **Characterizing soil aeration**



1. Gaseous composition of soil air 2. Air filled porosity More the air filled porosity, better the aeration oxygen diffuses 10,000 slower through water filled pores than in air filled pores

# **Characterizing soil aeration**

- 1. Gaseous composition of soil air
- 2. Air filled porosity
- 3. Oxidation-reduction (redox) potential
  - Redox potential tendency or potential for electrons to be transferred from one substance to another (E<sub>h</sub>)

**Q**Reference for  $E_h$ : Hydrogen,  $E_h = 1$ 

Redox potential determines which compound is present in the soil at a particular time, its concentration and oxidation state

# **Redox potential**

Living organisms release electrons while oxidizing carbon for energy

**O**<sub>2</sub> acts as an acceptor of these electrons (oxidizing agent)

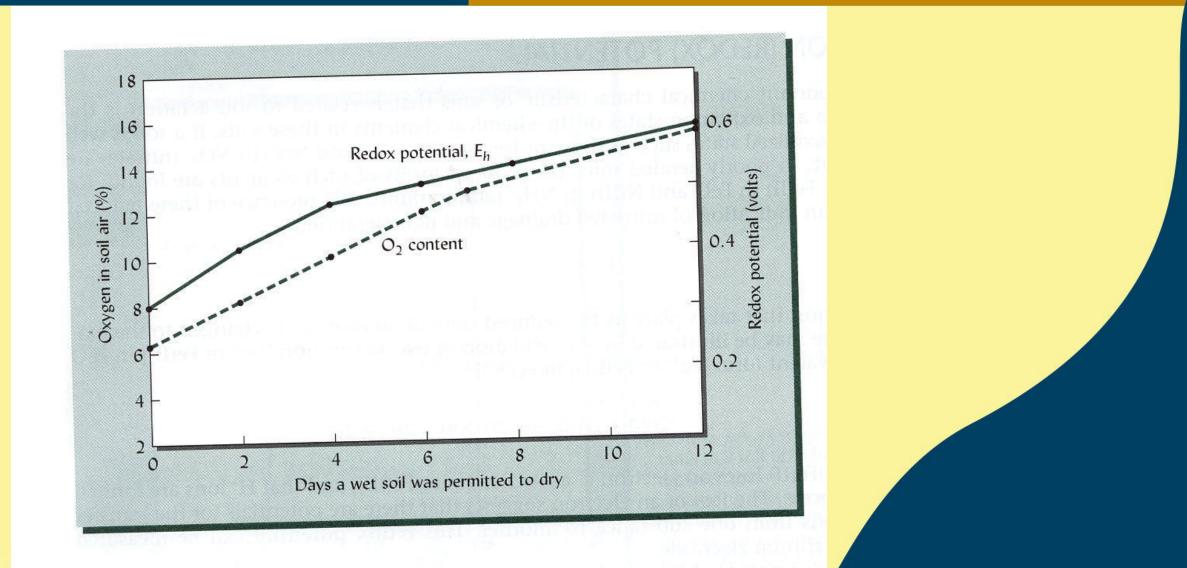
 $\Box$  Once all O<sub>2</sub> is depleted by this process, anaerobic zone created

$$\stackrel{(2+)}{\underset{\text{Fe(II)}}{\overset{(2+)}{\xrightarrow{}}}} 2 \stackrel{(3+)}{\underset{\text{Fe(III)}}{\overset{(2+)}{\xrightarrow{}}}} 2 \stackrel{(3+)}{\underset{\text{Fe(III)}}{\overset{(3+)}{\xrightarrow{}}}} 2 \stackrel{(3+)}{\underset{(3+)}{\overset{(3+)}{\xrightarrow{}}}} 2 \stackrel{(3+)}{\underset{(3+)}{\overset{(3$$

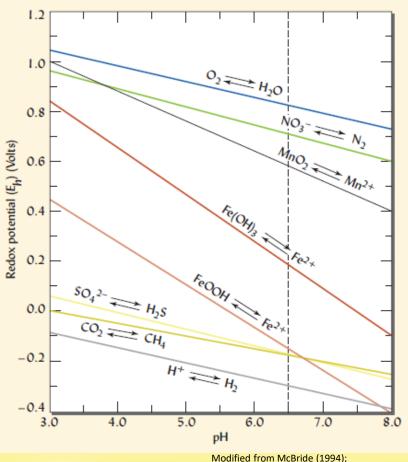
- As reaction proceeds to the right, each Fe(II) loses an electron (e-) to become Fe(III) and forms H+ ions by hydrolyzing H<sub>2</sub>O. These H+ ions lower the pH.
- When the reaction proceeds to the left, FeOOH acts as an electron acceptor and the pH rises as H+ ions are consumed.
- The tendency or potential for electrons to be transferred from one substance to another in such reactions is termed the redox potential (Eh)
- Eh measured by platinum electrode attached to a millivolt meter

#### **Redox potential: influence of O2**

Living organisms release electrons while oxidizing carbon for energy
 O<sub>2</sub> acts as an acceptor of these electrons (oxidizing agent)
 O<sub>2</sub> is in turn reduced
 Once all O<sub>2</sub> is depleted by this process, anaerobic zone created


overall effect of oxidation and reduction

 $2\text{FeO} + 2\text{H}_2\text{O} \rightleftharpoons 2\text{FeOOH} + 2\text{H}^+ + 2\text{e}^ 4/2\text{O}_2 + 2\text{H}^+ + 2\text{e}^- \rightleftharpoons \text{H}_2\text{O}$ 


 $2\text{FeO} + \frac{1}{2}\text{O}_2 + \text{H}_2\text{O} \implies 2\text{FeOOH}$ 

#### **Redox potential: influence of O2**

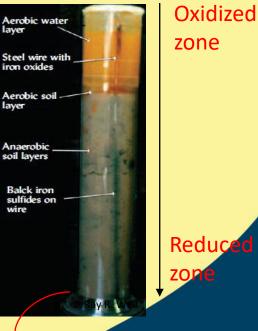
- □In a well-aerated soil with plenty of gaseous O<sub>2</sub>, the Eh is in the range of 0.4–0.7 volt (V).
- □As aeration is reduced and gaseous O<sub>2</sub> is depleted, the Eh declines to about 0.3–0.35 V.
- □If organic matter—rich soils are flooded under warm conditions, Eh values as low as -0.3 V can be found.



#### **Relative order of reduction in redox reactions**



used with permission of Oxford University Press


| Element   | Oxidized form     | Charge on<br>oxidized element | Reduced form     | Charge on<br>reduced element | change of form<br>occurs, V |
|-----------|-------------------|-------------------------------|------------------|------------------------------|-----------------------------|
| Oxygen    | O <sub>2</sub>    | 0                             | H <sub>2</sub> O | -2                           | 0.38 to 0.32                |
| Nitrogen  | $NO_3^-$          | +5                            | N <sub>2</sub>   | 0                            | 0.28 to 0.22                |
| Manganese | Mn <sup>4+</sup>  | +4                            | Mn <sup>2+</sup> | +2                           | 0.22 to 0.18                |
| Iron      | Fe <sup>3+</sup>  | +3                            | Fe <sup>2+</sup> | +2                           | 0.11 to 0.08                |
| Sulfur    | SO4 <sup>2-</sup> | +6                            | H <sub>2</sub> S | -2                           | -0.14 to -0.17              |
| Carbon    | CO <sub>2</sub>   | +4                            | CH <sub>4</sub>  | -4                           | -0.20 to -0.28              |

E<sub>h</sub> values from Patrick and Jugsujinda (1992).

- **Reactions occur from top to bottom order**
- Anaerobic organisms must use electron acceptor other than O<sub>2</sub>

E. at which

Example : iron is used here which is reduced to iron sulfide (black color)

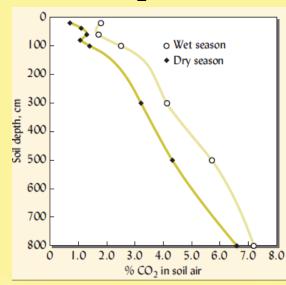


# **Factors affecting soil aeration**

#### 1. Drainage of excess water

Drainage of gravitational water out of the profile and concomitant diffusion of air into the soil takes place most readily in macropores
 Dependent on soil texture, bulk density, organic matter content etc

#### 2. Rates of respiration in soil


Depends on organic matter content

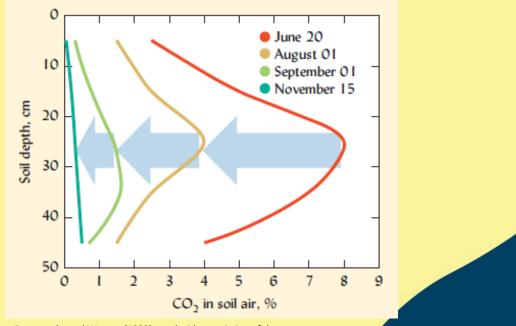
More the organic matter, more the microbes use them and release gases into the soil

# **Factors affecting soil aeration**

#### 3. Soil profile

#### $\Box O_2$ tends to decrease with depth $\Box CO_2$ increases with depth






# 4. Soil heterogeneity Long term tillage reduces aeration Clay soil has less aeration Interped zones have more aeration than within peds

# **5.** Seasonal differences

#### 6. Effects of vegetation

Vegetation transpires, lowers the ground water table, improves aeration



Buyanovsky and Wagner (1983); used with permission of the Soil Science Society of America

#### **Ecological effects of soil aeration**

- Effects on organic residue degradation
   More O<sub>2</sub>, more the decay of organic matter
   Entire soil property depends on soil aeration
- **2.** Oxidation reduction of elements

| OXIDIZED AND REDUCED FORMS OF SEVERAL IMPORTANT ELEMENTS |                                                                 |                                                                                      |  |  |
|----------------------------------------------------------|-----------------------------------------------------------------|--------------------------------------------------------------------------------------|--|--|
| Element                                                  | Normal form in<br>well-oxidized soils                           | Reduced form found<br>in waterlogged soils                                           |  |  |
| Carbon                                                   | CO <sub>2</sub> , C <sub>6</sub> H <sub>12</sub> O <sub>6</sub> | CH <sub>4</sub> , C <sub>2</sub> H <sub>4</sub> , CH <sub>3</sub> CH <sub>2</sub> OH |  |  |
| Nitrogen                                                 | NO <sub>3</sub>                                                 | N <sub>2</sub> , NH <sup>+</sup> <sub>4</sub>                                        |  |  |
| Sulfur                                                   | SO <sub>4</sub> <sup>-</sup>                                    | H <sub>2</sub> S, S <sup>2–</sup>                                                    |  |  |
| Iron                                                     | Fe <sup>3+</sup> [Fe(III) oxides]                               | Fe <sup>2+</sup> [Fe(II) oxides]                                                     |  |  |
| Manganese                                                | Mn <sup>4+</sup> [Mn(IV) oxides]                                | Mn <sup>2+</sup> [Mn(II) oxides]                                                     |  |  |

# **Ecological effects of soil aeration**

**Oxidized zones have red colors while reduced zones have grey, blue colors Anaerobic conditions causes emission of green house gases**  $CH_4$  and  $N_2O$ 

#### 3. Effects on activities of higher plants

Poor aeration affects shoot growth more than root growth
 Different plants have different degree of tolerance to waterlogging
 Low aeration also affects the nutrient uptake by plants

# **Fick's law**

The diffusion process can be described by Fick's law

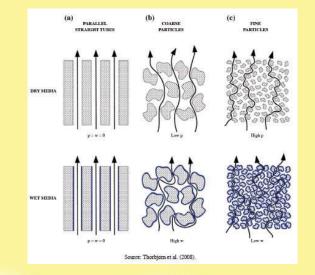
qd = -D dc/dx

qd =diffusive flux (mass diffusing across a unit area per unit per unit time)

- **D** = diffusion coefficient (area per time)
- c = concentration (mass of diffusing substance per volume)
- x = distance, and
- dc/dx = the concentration gradient

If partial pressure p is used instead of concentration of the

diffusing component, we get qd = -(D/ß)(dp/dx)


**ß** = ratio of the partial pressure to the concentration

# **Fick's law**

Considering first the diffusive path in the air phase,

➤ the diffusion coefficient in the soil D<sub>s</sub> must be smaller than that in bulk air D<sub>0</sub> owing to the limited fraction of the total volume occupied by continuous air-filled pores and also to the tortuous nature of these pores

> Ds to be some function of the air-filled porosity, fa .



### **Fick's law**

Different workers have over the years found different relations between Ds and fa for various soils. For instance, Buckingham (1904) reported the following nonlinear relation: Ds/ D<sub>0</sub> = Kfa<sup>2</sup>

> Penman (1940) found a linear relation : Ds/ D<sub>0</sub> = 0.66 fa

0.66= tortuosity coefficient, suggesting that the <u>apparent path is</u> <u>about 2/3 the length of the real average path of diffusion in the soil</u>

#### **Reference:**

The Nature and Properties of Soils by Nyle C. Brady and Ray R. Weil