

ASAC 1101 : FUNDAMENTALS OF SOIL SCIENCE (2+1)

Level : B.Sc (Ag), I semester

Dr. PEDDA GHOUSE PEERA S.K. SOIL SCIENCE AND AGRICULTURAL CHEMISTRY M.S.SWAMINATHAN SCHOOL OF AGRICULTURE,CUTM, PARLAKHEMUNDI

Topic

pH, soil acidity and alkalinity, buffering, Effect of pH on nutrient availability **Concepts Covered:**

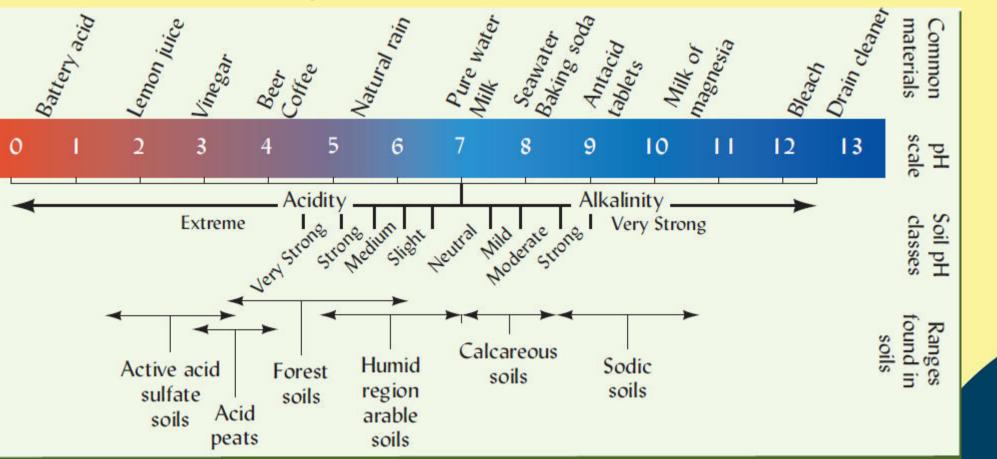
□What is soil acidity?

□ Natural and manmade causes of soil acidity

□ Pools of soil acidity

Ameliorating soil acidity

Soil acidity


- **Soil acidity is measured in pH units**
- **The smaller the pH**, the more the acidity

$$pH = -log[H^+]$$

[H⁺] : the concentration of H⁺ ions

Every unit change in pH indicates a 10 fold change in acidity

1. Carbonic and other organic acids Source: CO₂ from respiration and organic matter decomposition

 $CO_2 + H_2O \longrightarrow H_2CO_3 \iff HCO_3^- + H^+ pK_a = 6.35$

- 2. Accumulation of organic matter
- 3. Nitrification

causes acidity

Source: NH₄⁺ from fertilizers

$$NH_4^+ + 2O_2 \implies H_2O + H^+ + \underbrace{H^+ + NO_3}_{D_1 + 1}$$

Dissociated nitric acid

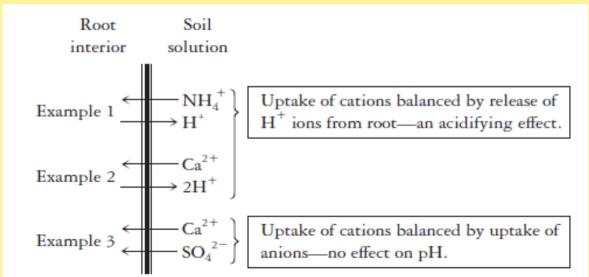
4. Sulphur oxidation

Source: pyrite parent material

$$\operatorname{FeS}_2 + 3\frac{1}{2}O_2 + H_2O \rightleftharpoons \operatorname{FeSO}_4 + 2H^+ + SO_4^{2}$$

Pyrite

Ferrous sulfate Dissociated sulfuric acid


5. Acid rain

Source: Sulphur and nitrogen from forest fires, lightening etc

$$H_2SO_4 \implies SO_4^{2-} + 2H^+$$

 $HNO_3 \implies NO_3^{-} + H^+$

6. Plant uptake of cations

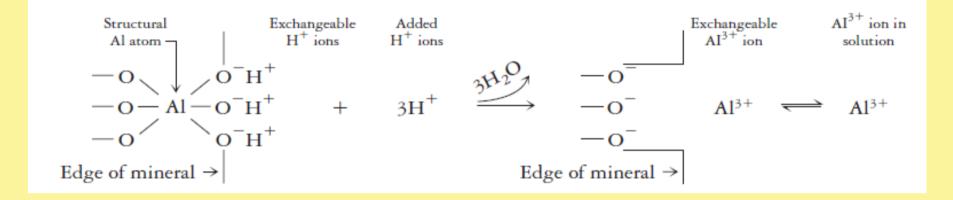
When plant roots take up more cations, they tend to balance it by releasing a H⁺ ion, lowering the soil pH

7. Human induced acidity

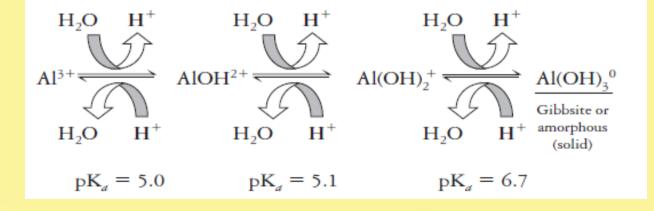
Source: excess nitrogen fertilizers, acid rain, exposing potential acid sulphate soils

$$\begin{array}{c} \operatorname{Fe^{II}S^{-1}}_{2} + 3\frac{1}{2}\operatorname{O}_{2} + \operatorname{H}_{2}\operatorname{O} & \Longrightarrow & \operatorname{Fe^{II}S^{VI}O_{4}} + \operatorname{H}_{2}\operatorname{S^{VI}O_{4}} \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & &$$

$$(NH_4)_2SO_4 + 4O_2 \implies 2HNO_3 + H_2SO_4 + 2H_2O$$

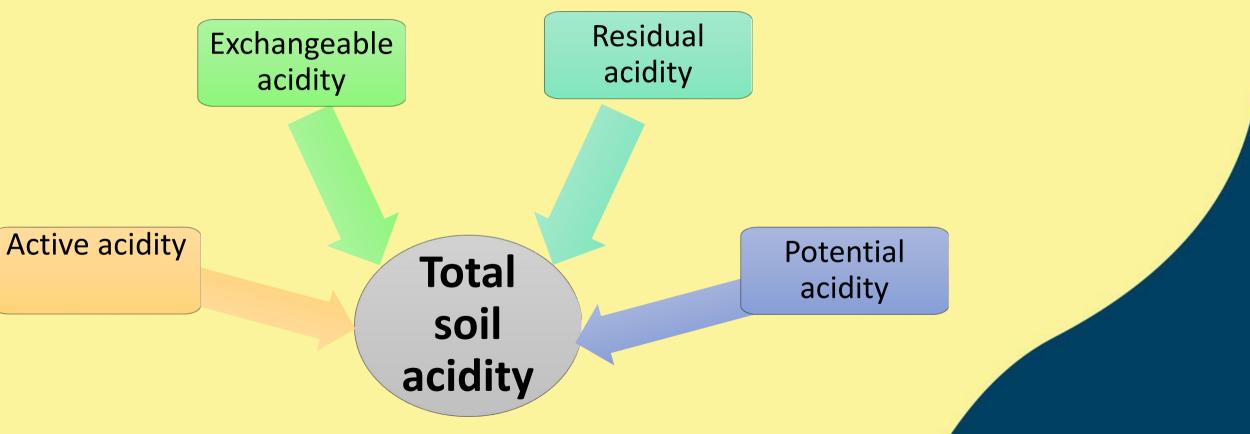

Nitric acid Sulfuric acid

Balance between production and consumption of H+ ions


THE MAIN PROCESSES THAT PRODUCE OR CONSUME HYDROGEN IONS (H⁺) IN SOIL SYSTEMS Production of H⁺ ions increases soil acidity, while consumption of H⁺ ions delays acidification and leads to alkalinity. The pH level of a soil reflects the long-term balance between these two types of processes.

Acidifying (H ⁺ ion-producing) processes	Alkalinizing (H ⁺ ion–consuming) processes		
Formation of carbonic acid from CO ₂	Input of bicarbonates or carbonates		
Acid dissociation such as:	Anion protonation such as:		
$RCOOH \rightarrow RCOO^- + H^+$	$RCOO^- + H^+ \rightarrow RCOOH$		
Oxidation of N, S, and Fe compounds	Reduction of N, S, and Fe compounds		
Atmospheric H ₂ SO ₄ and HNO ₃ deposition	Atmospheric Ca, Mg deposition		
Cation uptake by plants	Anion uptake by plants		
Accumulation of acidic organic matter	Specific (inner sphere) adsorption of anions (especially SO4 ²⁻)		
Cation precipitation such as:	Cation weathering from minerals such as:		
$AI^{3+} + 3H_2O \longrightarrow 3H^+ + AI(OH)_3^0$	$3\mathbf{H}^+ + \mathrm{AI}(\mathrm{OH})_3^0 \longrightarrow \mathrm{AI}^{3+} + 3\mathrm{H}_2\mathrm{O}$		
$SiO_2 + 2AI(OH)_3 + Ca^{2+} \rightarrow CaAI_2SiO_6 + 2H_2O + 2H^+$	$CaAl_2SiO_6 + 2H_2O + 2H^+ \rightarrow SiO_2 + 2Al(OH)_3 + Ca^{2+}$		
Deprotonation of pH-dependent charges	Protonation of pH-dependent charges		

How aluminium causes soil acidity?

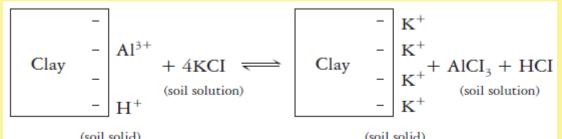


H⁺ releases aluminium from crystal structure and Al occupies exchangeable site of colloid

Each aluminium releases three H⁺ ions

Residual acidity > Exchangeable acidity > Active acidity

Pools of soil acidity

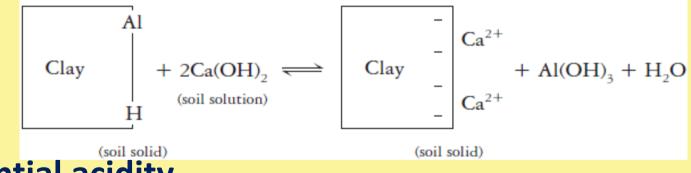

1. Active acidity

□This is the acidity usually measured using pH of soil solution □Can be easily balanced

2. Exchangeable acidity

Primarily caused by the Al³⁺ and H⁺ ions in exchangeable sites in soil minerals (exchangeable cations)

Can be measured by using unbuffered salts like KCl



Pools of soil acidity

3. Residual acidity

Primarily caused by Al³⁺ and H⁺ in non-exchangeable sites in soil colloid(bound cations)

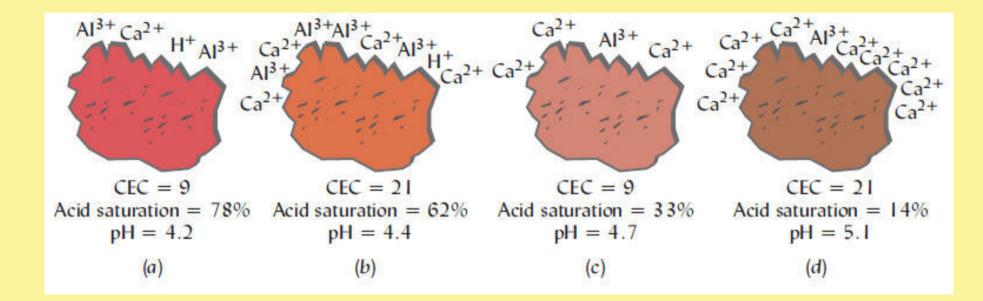
Released using liming materials

4. Potential acidity

Uthe maximal amount of acidity which a partly or totally reduced soil may contain after it has been completely oxidized

Cation saturation percentage

- Saturation percentage: proportion of CEC occupied by a given ion
- **Base saturation:** proportion of CEC occupied by non-acid cations Ca²⁺,Mg²⁺,K⁺ and Na⁺
- Acid saturation: proportion of CEC occupied by acid cations H⁺ and Al³⁺


```
Example: CEC = 20 cmol/kg with 10 Ca<sup>2+</sup>, 3 Mg<sup>2+</sup>, 1 K<sup>+</sup>, 1 Na<sup>+</sup>, 1 H<sup>+</sup> and 4 Al<sup>3+</sup>
```

```
What is the magnesium saturation?

\frac{3}{20} * 100 = 15\%
What is the base saturation?

\frac{(10+3+1+1)}{20} * 100 = 75\%
```

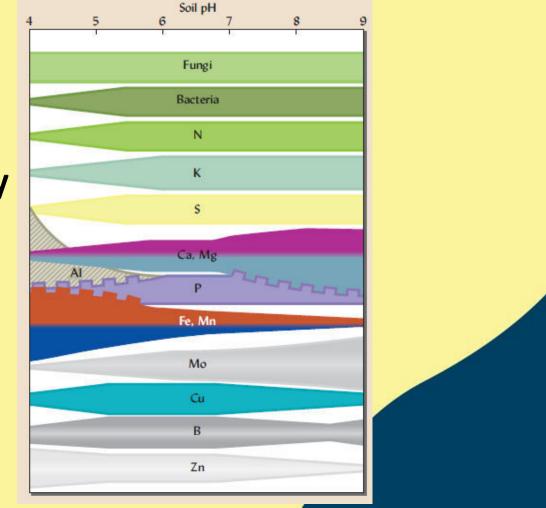
Relation between CEC and type of cations

Even though soils (b) and (d) have same Cation Exchange Capacity, soil (d) has less acid saturation and therefore higher pH value than soil (b)

Why should we consider soil buffering capacity?

Better buffered the soil, better it resists acidity from external factors

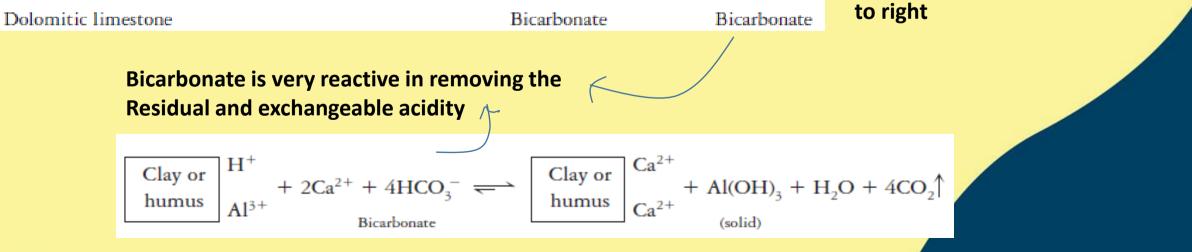
Buffering capacity helps us determine the amount of lime to be applied to raise the pH


Higher the CEC, more the buffering capacity of soil

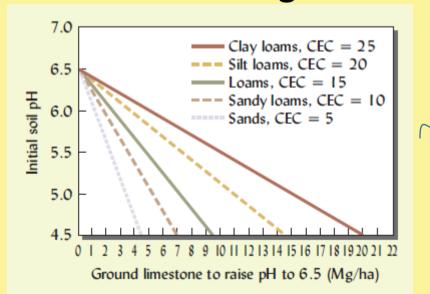
Compensating only active acidity will have little consequence

while liming. Therefore, we should also consider other pools

Effects of acidity


- **Aluminium toxicity**
- **Manganese**, Iron and Hydrogen toxicity
- **Affects microbial growth**
- **Optimal pH for plants affected**

Amelioration of acidity


Application of liming materials □Example: CaCO₃,CaMg(CO₃)₂, CaO, MgO, CaSiO₃ etc.

 $CaMg(CO_3)_2 + 2H_2O + 2CO_2 \implies Ca + 2HCO_3^- + Mg + 2HCO_3^-$ High CO₂ drives the reaction

Amelioration of acidity

Amount of lime used depends on pH target, depth of application ,buffer capacity of soil, lime material used and fineness of liming material

Fine textured soils need more liming as their
 buffer capacity to resist change is more.
 Split application of lime recommended

Amelioration of acidity

2. Using organic matter

They bind with Al and reduce their mobilityThey complex Al into non-toxic forms

3. Growing adapted plants

DA very practical solution

Crops native to acid soils can be cultivated

Through genetic engineering, new resilient varieties are also developed

Reference:

The Nature and Properties of Soils by Nyle C. Brady

and Ray R. Weil

CONCEPTS COVERED

Concepts Covered:

Causes of alkalinity and salinity

Measurement of salinity and alkalinity

Classification of saline soils

□ Reclamation and management

Causes of salinity

- Saline soils are generally developed in arid and semi-arid condition.
- Evaporation should be more than precipitation.
- The pH of the soils are >8.5.
- Saline soils are developed in crop fields not only due to the climate but also due to the use of saline irrigation water and poor drainage condition.
- Weathering of salt containing minerals.

Causes of high soil pH

- Sources of alkalinity
- Influence of carbon dioxide and carbonates
- Role of the cations (Na⁺ versus Ca²⁺)
- Influence of soluble salt level

Sources of Alkalinity

- Ca²⁺,Mg²⁺,Na⁺,K⁺ do not produce H⁺ after reacting with water
- These do not produce OH⁻
- But OH⁻ ions are produced from the dissolution of CaCO₃ (Calcite minerals) and HCO₃⁻
- The amount of OH⁻ increases in the soil solutions and it increases the pH of the soil

$$CaCO_{3} \rightleftharpoons Ca^{2+} + CO_{3}^{2-}$$

$$Calcite (solid) \qquad (dissolved \ in water) \ in water)$$

$$CO_{3}^{2-} + H_{2}O \rightleftharpoons HCO_{3}^{-} + OH^{-}$$

$$HCO_{3}^{-} + H_{2}O \rightleftharpoons H_{2}CO_{3} + OH^{-}$$

$$HCO_{3}^{-} + H_{2}O \rightleftharpoons H_{2}OO_{3} + OH^{-}$$

$$H_{2}CO_{3} \rightleftharpoons H_{2}O + CO_{2}\uparrow$$

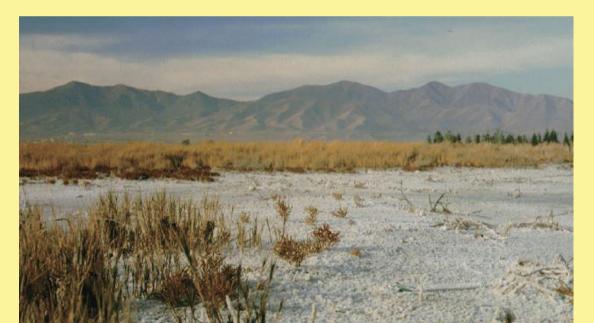
$$Carbonic \qquad (gas)$$

Influence of Carbon Dioxide and Carbonates

- The amount of CO₂ in soil is always more than the atmosphere: respiration
- But it will reduce the pH of the soil driving the reaction to the left.
- The increase in pH stopped when Ca²⁺ increases in the soil solution as it increases the precipitation of CaCO₃.
- The CaCO₃ precipitates at pH 7-8. So, in calcareous soil the pH never goes beyond 8.4.
- If Na₂CO₃ is present which is more soluble than CaCO₃ then pH can be increased up to 10.5.

Role of the Cations (Na⁺ Versus Ca²⁺)

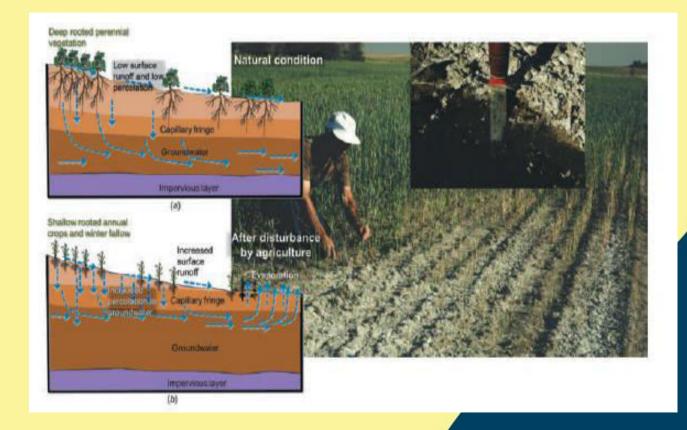
- Na₂CO₃ is more water soluble than the CaCO₃.
- So, it produces more OH^2 and CO_3^2 and it increases the pH up to 10.


Na₂CO₃
$$\implies$$
 2Na⁺ + CO₃²⁻
(solid) (dissolved (dissolved
in water) in water)

Influence of Soluble Salt Level

- The presence of the salts like CaSO₄,NaCl,Na₂SO₄, CaCl₂ etc. will reduce the alkalinity.
- The presence of common ions will drive the reaction to the left side.
- The common ion effect will reduce the dissolution of the CaCO₃ and Na₂CO₃.

Development of salt-affected soils


- Accumulation of salts in non-irrigated Soils
- Irrigation-Induced salinity and alkalinity

Accumulation of salts in Non-irrigated Soils

(a) Under deep-rooted perennial vegetation, transpiration is high and the water table is kept low.

(b) In case of agricultural crops, the length of the roots are small and it causes groundwater to rise by capillary flow to the surface.

Irrigation-induced salinity and alkalinity

- The irrigated water may contain huge or very less amount of salts.
- If, the field has not adequate drainage system, continuous evaporation accelerate the chance of salt accumulation.
- Salts tend to accumulate at the highest part of the soil surface from which part evaporation loss is the highest.

Measuring Salinity

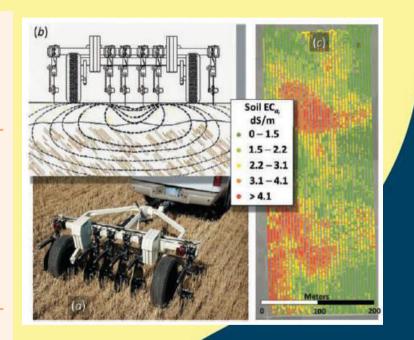
DIFFERENT MEASUREMENTS FOR ESTIMATING SOIL SALINITY

The methods are well correlated, so each can be converted to any other. The EC_e is the most common standard for comparison.

Measured on a soil sample

- ECe
 Conductivity of the solution extracted from a water-saturated soil paste

 ECp
 Conductivity of the water-saturated soil paste itself


 ECw
 Conductivity of the solution extracted from a soil-water mixture (usually either 1:2 or 1:5)
- EC_s Conductivity of a 1:1, 1:2, or 1:5 soil–water mixture itself
- TDS Total dissolved solids in water or the solution extracted from a water-saturated soil paste^a

Measured on bulk soil in place

 EC_a
 Apparent conductivity of bulk soil sensed by metal electrodes in soil

 EC^{*}_a
 Electromagnetic induction of an electric current using surface transmitter and receiving coils

^aNote that TDS (mg/L) can be converted to EC_w using these relationships between 0 and 5 dS/m: for Na salts, TDS = $640 \times EC_w$ based on a 1:2 soil:water mixture; for Ca salts, TDS = $800 \times EC_w$. The dilution effect of varying soil:water ratios must be taken into account when comparing data by the various EC_s and EC_w methods.

Measurement of sodium status

- Excess sodium destroys the physical properties of the soil which is called sodicity.
- It can be measured by different equations based on the relative amounts and flocculating ability of the various cations present.
- 1. <u>Exchangeable Sodium Percentage</u>

$$ESP = \frac{Exchangeable \text{ sodium, } cmol_c/kg}{Cation exchange capacity, cmol_c/kg} \times 100$$

- ESP measures the degree to which the exchange complex is saturated with sodium.
- ESP levels greater than 15 are associated with severely deteriorated soil physical properties and pH values of 8.5 and above.

Measurement of sodium status

2. <u>Sodium Adsorption Ratio (SAR)</u> is the second, more easily measured property that is becoming even more widely used than ESP. The SAR gives information on the comparative concentrations of Na⁺, Ca²⁺, and Mg²⁺ in soil solutions.

SAR =
$$\frac{\{Na^+\}}{(0.5\{Ca^{2+}\} + 0.5\{Mg^{2+}\})^{1/2}}$$

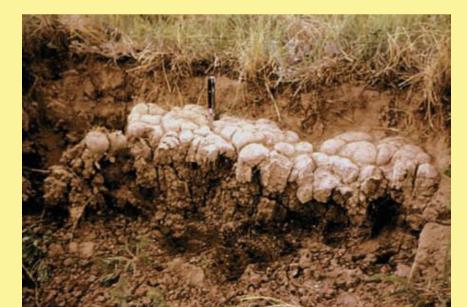
where [Na⁺], [Ca²⁺], and [Mg²⁺] are the concentrations (in mmol of charge/l) of the sodium, calcium, and magnesium ions in the soil solution.

- An SAR value of 13 for the solution extracted from a saturated soil paste is approximately equivalent to an ESP value of 15.
- It is used for characterizing the irrigation water.

Classes of salt-affected Soils

Properties	Saline soil (White alkali)	Saline-sodic soil	Sodic soil (Black alkali)	
Structure	Very good	Good	Structure less	
рН	Around 8.5.	8.5 <ph<10< td=""><td>>10</td><td></td></ph<10<>	>10	
EC	>4 dS/m	>4 dS/m	<4 dS/m	
ESP	<15	>15	>15	/
SAR	<13	>13	>13	
Major ions	Mainly Ca ²⁺ and Mg ²⁺ and SO ₄ ²⁻ , Cl ⁻	Salts of Ca ²⁺ and Mg ²⁺ with Na ⁺	Mainly Na ⁺ and CO ₃ ²⁻ HCO ₃ ⁻	

Sodic Soils


- Sodic soils are, perhaps, the most troublesome of the salt-affected soils.
- EC<4 dS/m but SAR >13 and ESP >15.
- The pH of the sodic soil exceed 8.5, rising to 10 or higher in some cases.
- The high pH is caused due to the presence of sodium carbonate which is highly soluble.
- So, the soil contains a high amount of CO₃²⁻ and HCO₃⁻ ions in the solution.
- At this high pH cause FA and HA of organic matter to dissolve. When the water evaporates, can give soil surface a black colour. These soils are called <u>black</u> <u>alkali.</u>

Physical degradation of soil by sodic chemical condition

- Slaking, Swelling, and Dispersion
- Two Causes of Soil Dispersion-<u>High Sodium</u> and <u>Low Salt Concentration</u>

- The plant growth is hampered due to the toxicity of Na⁺,OH⁻ and HCO₃⁻.
- These soils have columnar structure.
- Extremely poor soil physical conditions, slow permeability to water and air and clay dispersion reduces the crop productivity.

Columnar structure od Sodic soil

Leaching Requirement (LR)

The amount of water needed to remove the excess salts from saline soils, called the LR.

- The salt balance equation is –
- Siw- salt from irri water
- **Sp- atms deposition**
- **Sf- fertilizers**
- Sm- soil minerals
- Sdw- drainage water
- Sc- Crop removal

Sppt- chemical precipitation of sulphate and carbonates

Siw+Sp+Sf+Sm=Sdw+Sc+Sppt

Salt inputs Salt outputs

• The main concern is to balance the salt coming in with the irrigation water and that leaving with the drainage water:

Siw = Sdw

The amount of salt is calculated as the product of the volume of the water in cm and the amount of salts = D*EC

So, the equation will be-

Diw*ECiw=Ddw*ECdw

- → ECiw/ECdw=Ddw/Diw
- → ECiw/ECdw= Leaching requirement

Example:

Consider the situation where the irrigation water has an ECiw of 2.5 dS/m and a moderately tolerant crop (e.g., broccoli) is to be grown. For a moderately tolerant crop, we can use 8 dS/m as the acceptable *ECdw* to produce 90% of the maximum yield.

$$LR = \frac{2.5\,\mathrm{dS/m}}{8\,\mathrm{dS/m}} = 0.31$$

0.31 is multiplied by the amount of water (0.31*12cm water=3.7 cm). 3.7cm water is the minimum amount of water needed to maintain the root zone salinity at the acceptable level.

Management of soil salinity

- Irrigation water quality
- Growing salt tolerate crops

Reclamation of saline-sodic and sodic soils

- The Na⁺ ion is replaced by other cations (Ca²⁺ mainly).
- pH of the soil is reduced by adding a acid forming substances.
- Gypsum is generally used to reclaim sodic soil where exchange complex does not have Ca²⁺ ions.
- Otherwise any acid forming substances can be used for reclamation where Ca²⁺ ions are present in the exchange complex.

Sulfur and Sulfuric Acid

Gypsum

 $2NaHCO_{3} + CaSO_{4} \rightarrow CaCO_{3} + Na_{2}SO_{4} + CO_{2}\uparrow + H_{2}O$ $Na_{2}CO_{3} + CaSO_{4} \longleftrightarrow CaCO_{3} + Na_{2}SO_{4}$ (insoluble) (leachable) $Na^{+}_{Na^{+}}Colloid + CaSO_{4} \longleftrightarrow Ca^{2+}Colloid + Na_{2}SO_{4}$

 $2NaHCO_3 + H_2SO_4 \rightarrow 2CO_2 \uparrow + 2H_2O + Na_2SO_4$ (leachable)

$$Na_2CO_3 + H_2SO_4 \rightarrow CO_2\uparrow + H_2O + Na_2SO_4$$

(leachable)

Problem

- How much gypsum is needed to reclaim a sodic soil with an ESP of 25% and a cation exchange capacity of 18 cmolc/kg? Assume that you want to reduce the ESP of the upper 30 cm of soil to about 5% so that a crop like alfalfa could be grown.
- Solution

First, determine the amount of Na+ ions to be replaced by multiplying the CEC (18) by the change in Na⁺ saturation desired (25 - 5 = 20%).

18 cmolc /kg * 0.20 = 3.6 cmolc /kg

From the reaction that occurs when the gypsum (CaSO₄·2H₂O) is applied,

$$\begin{tabular}{|c|c|c|c|}\hline Colloid & Na^+ \\ Na^+ & + CaSO_4 \cdot 2H_2O & & \hline Colloid \\ Ca^{2+} & + Na_2SO_4 & + 2H_2O \end{tabular}$$

3.6 cmolc of CaSO $_4 \cdot 2H_2O$ will be needed to replace 3.6 cmolc of Na⁺.

Second, calculate the weight in grams of gypsum needed to provide the 3.6 cmolc/kg soil. This can be done by first dividing the molecular weight of CaSO₄ · 2H₂O (172) by 2 (since Ca²⁺ has two charges and Na+ only one) and then by 100 since we are dealing with centimole rather than mole.

 $172/2 = 86 \text{ g CaSO}_4, 2H_2O/molc$

and

86/100 = 0.86 g CaSO₄ ,2H₂O/cmolc required to replace 1 cmolc Na⁺ The 3.6 cmol Na⁺/kg would require 3.6 cmol /kg * 0.86/cmolc = 3.1 g CaSO₄ ,2H₂O/kg of soil.

 Last, to express this in terms of the amount of gypsum needed to treat 1 ha of soil to a depth of 30 cm, multiply by 4*10⁶, which is twice the weight in kg of a 15-cm-deep hectare–furrow slice

3.1 g /kg * 4 * 10⁶ kg/ha = <u>12,400,000 g gypsum/ha</u>