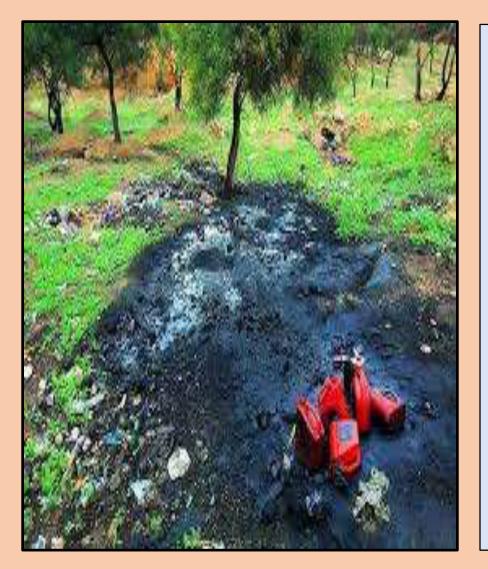


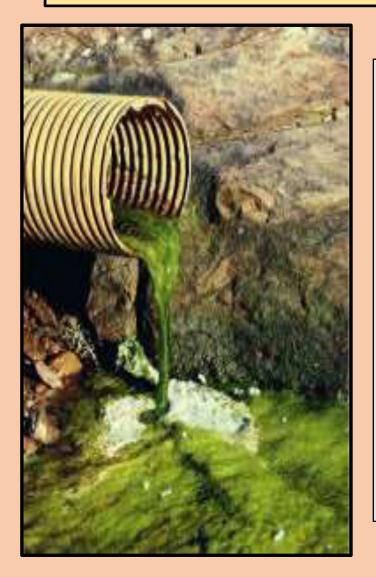
ASAC 1101 : FUNDAMENTALS OF SOIL SCIENCE (2+1)


Level : B.Sc (Ag), I semester

Dr. PEDDA GHOUSE PEERA S.K. SOIL SCIENCE AND AGRICULTURAL CHEMISTRY M.S.SWAMINATHAN SCHOOL OF AGRICULTURE,CUTM, PARLAKHEMUNDI

Topic

Soil pollution -causes, prevention and mitigation of soil pollution


Soil Pollution

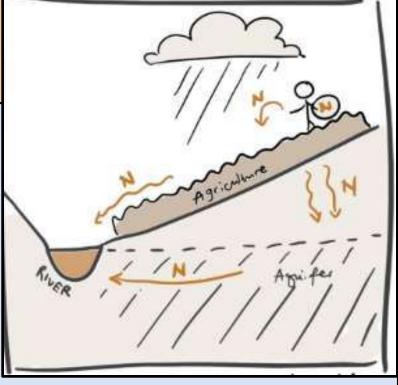
"Any undesirable change in the physical, chemical or biological properties of the soil, which is harmful to environment, living organisms and plants"

- Two types:
- 1. Point-source pollution
- 2. Diffuse pollution

Point-source Pollution

•A specific event or a series of events within a particular area in which contaminants are released to the soil, and the source and identity of the pollution is easily identified. This type of pollution is known as point-source pollution. •Anthropogenic activities and urban centers are main sources.

Examples of Point Source Pollution



Diffuse Pollution

•When pollutants spread over very wide

areas, accumulates in soil, and does

not have a single or easily identified

source.

•Diffuse pollution occurs where emission, transformation and dilution of contaminants in other media have occurred prior to their transfer to soil.

Examples

- Sources from nuclear power and weapons activities
- Uncontrolled contaminated effluents released in and

near catchments

- Land application of sewage sludge
- Drifting of agricultural pesticides

Causes of Soil Pollution

1. Natural and Geogenic

Parent materials

Volcanic eruption

2. Anthropogenic

Industrial Activities

*Mining

Urban and Transport Infrastructures

Waste and Sewage Generation and Disposal

Military Activities and Wars

*Agricultural and Livestock Activities

Natural and Geogenic

- Several soil parent materials are natural source of certain heavy metals and other elements, such as radionuclides.
- Natural sources of As include volcanic releases and

weathering of As-containing minerals and ores.

• High natural radioactivity is common in acidic

igneous rocks, mainly in feldspar-rich rocks and illite-

rich rocks. (Blume et al. 2016)

MINERALS	SOIL CONTAMINANTS
Thorite, Monazite	THORIUM
Uraninite, Andersonite	URANIUM
Torbernite	RADON
Greenockite	CADMIUM
Galena, Wulfenite	LEAD

Anthropogenic Causes

- Industrial Activities
- Mining
- Urban and Transport Infrastructures
- Waste and Sewage Generation and Disposal
- Military Activities and Wars
- Agricultural Activities

Agricultural Activities

• Excessive fertilizer usage can lead to soil salinity, heavy metal accumulation, water eutrophication and accumulation of nitrate, which can be a source of environmental pollution but also a threat to human health.

Trace metals from pesticides and fertilizers, such as, Cd, Pb and Hg are considered soil pollutants as they can impair plant metabolism and decrease crop productivity

Persistence of herbicide in soil

Herbicide	Half lives (days)	Herbicide	Half lives (days)
Atrazine (Aatrex)	13-58	Metribuzine	23-49
Butachlor	5-24	Metolachlor (Dual)	8-24
Fluazifop-p-etyl	8-24	Oxyfluorfen	12-29
Fluchloralin (Basalin)	12-46	Pendimethalin (Stomp)	15-77
Imazethapyr (Counter)	57-71	Sulfosulfuron (Leader)	3-27
Isoproturon (Ronak)	13-21	2,4-D (Gaurd)	7-22

Sondhia (2007)

Persistence of fungicide and Insecticide

Fungicide	Half life (days)
Azoxystrobin	65
Captan (Orthocide)	1-10
Mancozeb	70
Metalaxyl (Apron)	70
Propamocarb	30

Insecticide	Half life
DDT	10-15 years
Aldrin	5 years
Heptachlor	Up to 2 years
Carbaryl (sevin)	10 days
Dimethoate (Cygon)	7 days

Chaudhary et al. (2002)

Gadwa (2002)

Soil Contaminants	Potential Sources	Health Hazards		
Mercury (Hg)	 Incineration of coal Alkali processing Medical waste Gaalagia deposits 	 Loss of hairs & teeth Photophobia Kidney dysfunction Momory impairment 		
L and (Dh)	Geologic depositsAccumulation in plants	Memory impairmentInsomnia in children		
Lead (Pb)	 Lead paint Vehicle exhaust Construction activities 	Weight lossIrritabilityNeurological problem		
		HeadacheAutism		

Soil Contaminants	Potential Sources	Health Hazards	
Arsenic (As)	 Coal-fired power plants Lumber facilities Electronics industry Agriculture Natural accumulation 	 Pregnancy complications Infant mortality Bladder or lung cancer in cases of long-term exposure 	
Cadmium (Cd)	 Fossil fuel combustion Phosphate fertilizers Natural sources Steel production Cement production 	 Headache Weakness Fever Pancreatic cancer Chest Pain 	

Soil Contaminants	Potential Sources	Health Hazards
Polyaromatic Hydrocarbons	 Coal burning Vehicle emissions Cigarette smoke Wildfires 	 Immunosuppression Cancer Liver damage Respiratory tract diseases
Pesticide	 Agricultural activities Gardening 	 Birth defects Reproductive problems Leukaemia Blood disorders

Heavy metal concentration in soil around hazardous waste disposal sites

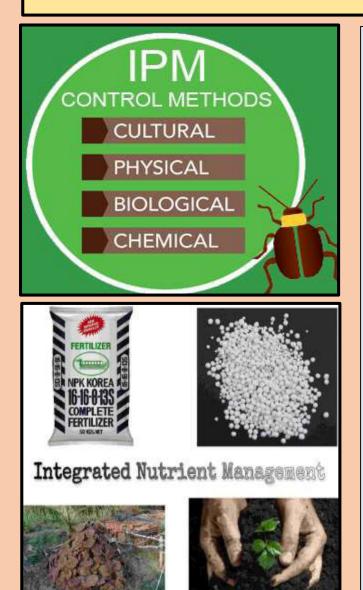
	As	Cr	Cu	Ni	Pb	Zn
Minimum	6.1	12.2	11.0	12.5	42.9	26.9
Maximum	411.4	480.5	186.6	131.9	1833.5	882.1
Average	51.7	127.9	35.2	48.0	206.4	122.3
Threshold Value*	12.0	64.0	63.0	50.0	70.0	200.0

Location : Hyderabad

Vandana et al. (2011)

Impacts of Soil Pollution on Environment

- Decomposition of sewage may also release various toxic heavy metals that cause characteristic heavy metal toxicity symptoms in plants.
- Soil pollution allows great quantities of nitrogen to escape through ammonia volatilization and denitrification, and the decomposition of organic materials in soil can release sulfur dioxide and other sulfur compounds, causing acid rain.


• Soil pollution increase the salinity of the soil making it unfit for vegetation, thus making it useless and barren.

• The oxides of sulphur and nitrogen, chlorides, fluorides, ammonium etc. emitted into the atmosphere in combustion from various industries come down as dry or wet deposition (acid rain) onto the soil and lower the soil pH.

• Acidic deposition into the soil can hamper its ability to buffer changes in the soil pH, causing plants to die off due to inhospitable conditions.

• Small life forms may consume harmful chemicals in the soil which may then be passed up the food chain to larger animals, which may lead to increased mortality rates and even animal extinction.

Management and Remediation of Polluted Soils

• Oil and related materials should be handled with care during storage and transportation. Addition of certain species of microorganisms i.e. Pseudomonas fluorescens, P. aeruginosa, Bacillus subtilis, Flavobacterium sp., Micrococcus roseus in polluted soils can decompose oil and related materials.

 Promotion of organic amendments and bio-pesticides in place of inorganic agrochemicals.

- Landfill locations for waste disposal should not be near to residential areas or ground water level.
- Thermal remediation can be used to volatize chemical contaminants out of the soil by vapour extraction mechanism.
- Consideration of reusable or recyclable containers, irrespective of plastic.
- Industrial toxic waste should be treated to reduce its toxicity before it is disposed off.

- Soil polluted with heavy metals, organic and inorganic toxic substances can be ameliorated through phyto- remediation and bioremediation.
- Bioremediation include landfarming,
 biostimulation and bioaugmenting soil
 biota with commercially available
 microflora.
- Examples of hyperaccumulator are sunflower, mustard, oats, barley etc.