

ASAC 1101: FUNDAMENTALS OF SOIL SCIENCE (2+1)

Level: B.Sc (Ag), I semester

Dr. PEDDA GHOUSE PEERA S.K.
SOIL SCIENCE AND AGRICULTURAL CHEMISTRY
M.S.SWAMINATHAN SCHOOL OF AGRICULTURE, CUTM,
PARLAKHEMUNDI

Topic
Soil physical properties
Soil texture

Soil texture: definition

- □Relative proportions of soil separates i.e. sand, silt and clay in the soil
- □ A basic, hard to alter property

Soil separate	USDA particle size range (mm)	
Sand	0.05 - 2	
Silt	0.002 - 0.05	
Clay	< 0.002	

Soil separates

	Sand	Silt	Clay
Size	0.05 – 2 mm	0.002 – 0.05 mm	< 0.002 mm
Feel	gritty	smooth and silky	Feels sticky
Pore size	Large	Smaller than sand	Very small
Water and nutrient holding capacity	Less	More than sand	High but releasing capacity is less
Specific Surface	Low	Large	Tremendous

Specific Surface Area

Importance of specific surface area(SSA)

Soil textural classes

- □Soil textural classes convey an idea of size distribution of particles and the general nature of their physical properties.
- **□** Depicted by using a textural triangle
- □12 textural classes

Textural triangle

----- Clayey soils -----

Sandy soils

How to use soil texture triangle?

30% clay, 20% silt, and 50% sand

Determination of soil texture – feel method

UC Davis

Sand

- Feels gritty
- Considered non-cohesive does not stick together in a mass unless it is very wet

Silt

- Does not feel gritty
- Floury feel –smooth like silly putty

Clay

- Wet clay is very sticky and is plastic or it can be molded readily into a shape or rod
- Easily formed into long ribbons

Determination of soil texture – laboratory analysis method

- □ Classical sedimentation method
 - ☐ soil dispersed using chemical agents and allowed to sediment
 - "The bigger they are, the faster they fall"
 - ☐ Pipette and Hydrometer methods
 - ☐ Time consuming and inaccurate
- **□**Laser diffraction method
 - ☐ Fast and precise
 - ☐ However, greatly underestimates clay

LDPSA

Stokes' Law

$$V = \frac{h}{t} = \frac{d^2g(D_s - D_f)}{18\eta}$$

Where:

g = gravitational force = 9.81 newtons per kilogram (9.81 N/kg)

$$\eta$$
 = viscosity of water at 20°C = 1/1000 newton-
seconds per m² (10³ Ns/m²)

$$D_s =$$
 density of the solid particles, for most soils = $2.65 \times 10^3 \text{ kg/m}^3$

$$D_f = \text{density of the fluid (i.e., water)} = 1.0 \times 10^3 \text{ kg/m}^3$$

Substituting these values into the equation, we can write:

$$V = \frac{h}{t}$$

$$= \frac{d^2 \times 9.81 \text{ N/kg} \times (2.65 \times 10^3 \text{ kg/m}^3 - 1.0 \times 10^3 \text{ kg/m}^3)}{18 \times 10^{-3} \text{ Ns/m}^2}$$

$$= \frac{9.81 \text{ N/kg} \times 1.65 \times 10^3 \text{ kg/m}^3}{18 \times 10^{-3} \text{ Ns/m}^2} \times d^2$$

$$= \frac{16.19 \times 10^3 \text{ N/m}^3}{0.018 \text{ Ns/m}^2} \times d^2$$

$$= \frac{9 \times 10^5}{\text{sm}} \times d^2 = kd^2, \text{ where } \dots k = \frac{9 \times 10^5}{\text{sm}}$$

Importance of soil texture

- ☐ Soil texture determines the water holding capacity of the soil
- ☐ Impacts the soil aeration-well drained soil allows good aeration
- □Affects the degree to which the soil is susceptible to erosion
- □Affects the organic matter levels of the soil