

ASAC 1101 : FUNDAMENTALS OF SOIL SCIENCE (2+1)

Level : B.Sc (Ag), I semester

Dr. Bishnuprasad Dash SOIL SCIENCE AND AGRICULTURAL CHEMISTRY M.S.SWAMINATHAN SCHOOL OF AGRICULTURE, CUTM, PARLAKHEMUNDI

> **Topic** Salinity and Alkalinity

CONCEPTS COVERED

Concepts Covered:

Causes of alkalinity and salinity

Measurement of salinity and alkalinity

Classification of saline soils

□ Reclamation and management

Causes of salinity

- Saline soils are generally developed in arid and semi-arid condition.
- Evaporation should be more than precipitation.
- The pH of the soils are >8.5.
- Saline soils are developed in crop fields not only due to the climate but also due to the use of saline irrigation water and poor drainage condition.
- Weathering of salt containing minerals.

Causes of high soil pH

- Sources of alkalinity
- Influence of carbon dioxide and carbonates
- Role of the cations (Na⁺ versus Ca²⁺)
- Influence of soluble salt level

Sources of Alkalinity

- Ca²⁺,Mg²⁺,Na⁺,K⁺ do not produce H⁺ after reacting with water
- These do not produce OH-
- But OH⁻ ions are produced from the dissolution of CaCO₃ (Calcite minerals) and HCO₃⁻
- The amount of OH⁻ increases in the soil solutions and it increases the pH of the soil

$$CaCO_{3} \rightleftharpoons Ca^{2+} + CO_{3}^{2-}$$

$$Calcite (solid) \qquad (dissolved (dissolved in water) in water)$$

$$CO_{3}^{2-} + H_{2}O \rightleftharpoons HCO_{3}^{-} + OH^{-}$$

$$HCO_{3}^{-} + H_{2}O \rightleftharpoons H_{2}CO_{3} + OH^{-}$$

$$H_{2}CO_{3} \rightleftharpoons H_{2}O + CO_{2}\uparrow$$

$$Carbonic (gas)$$

2.1

Influence of Carbon Dioxide and Carbonates

- The amount of CO₂ in soil is always more than the atmosphere: respiration
- But it will reduce the pH of the soil driving the reaction to the left.
- The increase in pH stopped when Ca²⁺ increases in the soil solution as it increases the precipitation of CaCO₃.
- The CaCO₃ precipitates at pH 7-8. So, in calcareous soil the pH never goes beyond 8.4.
- If Na₂CO₃ is present which is more soluble than CaCO₃ then pH can be increased up to 10.5.

Role of the Cations (Na⁺ Versus Ca²⁺)

- Na₂CO₃ is more water soluble than the CaCO₃.
- So, it produces more OH⁻ and CO₃⁻ and it increases the pH up to 10.

 $Na_2CO_3 \implies 2Na^+ + CO_3^{2-}$ (solid) (dissolved (dissolved in water) in water)

Classes of salt-affected Soils

Properties	Saline soil (White alkali)	Saline-sodic soil	Sodic soil (Black alkali)	
Structure	Very good	Good	Structure less	
рН	Around 8.5.	8.5 <ph<10< td=""><td>>10</td><td></td></ph<10<>	>10	
EC	>4 dS/m	>4 dS/m	<4 dS/m	
ESP	<15	>15	>15	/
SAR	<13	>13	>13	
Major ions	Mainly Ca ²⁺ and Mg ²⁺ and SO ₄ ²⁻ , Cl ⁻	Salts of Ca ²⁺ and Mg ²⁺ with Na ⁺	Mainly Na ⁺ and $CO_3^{2-}HCO_3^{-}$	

Sodic Soils

- Sodic soils are, perhaps, the most troublesome of the salt-affected soils.
- EC<4 dS/m but SAR >13 and ESP >15.
- The pH of the sodic soil exceed 8.5, rising to 10 or higher in some cases.
- The high pH is caused due to the presence of sodium carbonate which is highly soluble.
- So, the soil contains a high amount of CO_{3,2} and HCO₃ ions in the solution.
- At this high pH cause FA and HA of organic matter to dissolve. When the water evaporates, can give soil surface a black colour. These soils are called <u>black</u> <u>alkali.</u>

Management of soil salinity

- Irrigation water quality
- Growing salt tolerate crops

Reclamation of saline-sodic and sodic soils

- The Na⁺ ion is replaced by other cations (Ca²⁺ mainly).
- pH of the soil is reduced by adding a acid forming substances.
- Gypsum is generally used to reclaim sodic soil where exchange complex does not have Ca²⁺ ions.
- Otherwise any acid forming substances can be used for reclamation where Ca²⁺ ions are present in the exchange complex.

Gypsum

Sulfur and Sulfuric Acid

$$\begin{split} & 2\mathrm{NaHCO}_3 + \mathrm{H_2SO}_4 \rightarrow 2\mathrm{CO}_2 \uparrow + 2\mathrm{H_2O} + \mathrm{Na_2SO}_4 \\ & & \text{(leachable)} \\ & \mathrm{Na_2CO}_3 + \mathrm{H_2SO}_4 \rightarrow \mathrm{CO}_2 \uparrow + \mathrm{H_2O} + \mathrm{Na_2SO}_4 \\ & & \text{(leachable)} \end{split}$$

 $2NaHCO_{3} + CaSO_{4} \rightarrow CaCO_{3} + Na_{2}SO_{4} + CO_{2}\uparrow + H_{2}O$ $Na_{2}CO_{3} + CaSO_{4} \longleftrightarrow CaCO_{3} + Na_{2}SO_{4}$ (insoluble) (leachable) $Na^{+}_{Na^{+}}Colloid + CaSO_{4} \longleftrightarrow Ca^{2+}Colloid + Na_{2}SO_{4}$

THANK YOU