

Series-Parallel Circuits

Construct: Circuit Analysis: Theory and Practice ©Delmar Cengage Learning

The Series-Parallel Network

- Complex circuits
 - May be separated both series and/or parallel elements
 - Combinations which are neither series nor parallel
- To analyze a circuit
 - Identify elements in series and elements in parallel

For example:

	Analysis of Series-Parallel Circuits
	Rules for analyzing series and parallel circuits apply:
	Same current occurs through all series elements Same voltage occurs across all parallel elements
	KVL and KCL apply for all circuits
5	Steps to simplify a circuit:
	 Redraw complicated circuits <u>showing the source at the</u> <u>left-hand side</u> and then label all nodes
	Simplify recognizable combinations of components
	Determine equivalent resistance R_T and solve for the total current
	 Label polarities of voltage drops on all components Calculate how currents and voltages split between elements in a circuit

Verify your answer by taking a different approach

Example: Analysis of Series-Parallel Circuits

Find the voltage V_{ab}

- Redraw circuit in simple form
- Determined by combination of voltages across R₁ and R₂, or R₃ and R₄ (use voltage divider rule)

Example: Analysis of Series-Parallel Circuits

Find currents in the circuit

- First redraw the circuit and move source branch all the way to left and reduce circuit to a series circuit
- Voltages: Use Ohm's Law or Voltage Divider Rule
- Currents: Use Ohm's Law or <u>Current Divider Rule</u>

*Transistor Circuit

Transistor is a device that amplifies a signal

Operating point of a transistor circuit is determined by a dc voltage source

Determine some dc voltages and currents

- Apply KVL: $V_{BB} = R_B I_B + V_{BE} + R_E I_E$ Using $I_E = 100 I_B$, we find $I_B = 14.3 \ \mu$ A.

- 1. Can recognize which parts are in series or parallel for a series-parallel circuit.
- 2. Can compute the total resistance R_t of resistors $R_1 \sim R_n$ in series-parallel.
- 3. Can recognize KVL and KCL for applying a seriesparallel circuit.
- 4. Can recognize the voltage divider and current divider for applying a series-parallel circuit.

22

5. Can recognize the loading effect for measuring voltage and current.

Problem 37: Find the reading of ammeter

C-C Tsai