

Series-Parallel Circuits

©) c-©othice: Circuit Analysis: Theory and Practice ©Delmar Cengage Learning

The Series-Parallel Network

In this circuit:

- R_{3} and R_{4} are in parallel
- Combination is in series with R_{2}
- Entire combination is in parallel with R_{1}

$$
R_{\mathrm{T}}=R_{1} \|\left[R_{2}+\left(R_{3} \| R_{4}\right)\right]
$$

Another example:

Analysis of Series-Parallel Circuits

Rules for analyzing series and parallel circuits apply:

- Same current occurs through all series elements
- Same voltage occurs across all parallel elements
- KVL and KCL apply for all circuits

Steps to simplify a circuit:

- Redraw complicated circuits showing the source at the left-hand side and then label all nodes
- Simplify recognizable combinations of components
- Determine equivalent resistance $\boldsymbol{R}_{\boldsymbol{T}}$ and solve for the total current
- Label polarities of voltage drops on all components
- Calculate how currents and voltages split between elements in a circuit
(4)c-c Tsai Verify your answer by taking a different approach

Example: Analysis of Series-Parallel Circuits

- Combining R_{2} and R_{3} in parallel
- Circuit reduces to a series circuit
- Use Voltage Divider Rule to determine $V_{a b}$ and $V_{b c}$
- Note that $V_{b c}=V_{2}$ is the voltage across R_{2} and R_{3}
- Calculate all currents from Ohm's Law.

Example: Analysis of Series-Parallel Circuits
Find the voltage $\boldsymbol{V}_{a b}$

- Redraw circuit in simple form
- Determined by combination of voltages across R_{1} and R_{2}, or R_{3} and R_{4} (use voltage divider rule)

Example: Analysis of Series-Parallel Circuits
Find currents in the circuit

- First redraw the circuit and move source branch all the way to left and reduce circuit to a series circuit
- Voltages: Use Ohm's Law or Voltage Divider Rule
- Currents: Use Ohm's Law or Current Divider Rule

(a) $\mathrm{c}-\mathrm{C}$ tsai

Example: Analysis of Series-Parallel Circuits
Find $v_{a b}$

Example: Analysis of Series-Parallel Circuits
Find $\boldsymbol{V}_{\mathrm{ab}}$

(2) $\mathrm{C}-\mathrm{CTsa}$

Example: Bridge Circuit

- Determine $V_{a b}$ and I if R_{X} is a short circuit (0Ω) $V_{a b}=V_{a}-V_{b}=8 \mathrm{~V}-0 \mathrm{~V}=\mathbf{8 V}$ $I=10 /[(50+200) / / 5 \mathrm{k}]=10 / 238=42.2 \mathrm{~mA}$

(a) $\mathrm{C}-\mathrm{C}$ Tsai

10

Example: Bridge Circuit

- Determine $V_{a b}$ and I if circuit has $\underline{R}_{\underline{x}}=15 \mathbf{k} \Omega$
$V_{a b}=V_{a}-V_{b}=8 \mathrm{~V}-7.5 \mathrm{~V}=0.5 \mathrm{~V}$
$I=10 /[(50+200) / /(5 \mathrm{k}+15 \mathrm{k})]=10 / 247=40.5 \mathrm{~mA}$

(2) C-C Tsai

11

Bridge Circuit
Determine $\boldsymbol{V}_{a b}$ and I if \boldsymbol{R}_{x} is open $V_{a b}=V_{a}-V_{b}=8 \mathrm{~V}-10 \mathrm{~V}=-2 \mathrm{~V}$
$I=10 /(50+200)=10 / 250=40 \mathrm{~mA}$

(a) C-C Tsai

*Transistor Circuit

Fransistor is a device that amplifies a signal

- Operating point of a transistor circuit is determined by a dc voltage source

Determine some dc voltages and currents

- Apply KVL: $V_{B B}=R_{B} I_{B}+V_{B E}+R_{E} I_{E}$
- Using $I_{E}=100 I_{B}$, we find $I_{B}=14.3 \mu \mathrm{~A}$.

Potentiometers

- Example of variable resistor used as potentiometer
- Moveable terminal is at uppermost position then $V_{b c}=60 \mathrm{~V}$
- At the lowermost position

(2) C-C Tsai $O c$

Potentiometers
 $V_{b c}$ changes
 - If load is added to circuit at upper position
 then $V_{b c}=40 \mathrm{~V}$
 - At the lower position
 then $V_{b c}=0 \mathrm{~V}$

© c

Load Effects of Instruments

Actual value

$V_{R 1}=27 \mathrm{~V} * 5 \mathrm{M} /(5 \mathrm{M}+10 \mathrm{M})$ $=9 \mathrm{~V}$

Reading value

$V_{R 1}=27 \mathrm{~V} * 3.3 \mathrm{M} /(3.3 \mathrm{M}+10 \mathrm{M})$

$$
=6.75 \mathrm{~V}
$$

Loading effect
$=(9-6.75) / 9=\mathbf{2 5 \%}$
(2) C-C Tsai

Example: Load Effects of Instruments

Actual value

$V_{R_{2}}=27 \mathrm{~V} * \mathbf{1 0 M} /(5 \mathrm{M}+\mathbf{1 0 M})$
$=18 \mathrm{~V}$

Reading value

$V_{R_{2}}=27 \mathrm{~V} * 5 \mathrm{M} /(5 \mathrm{M}+5 \mathrm{M})$

$$
=13.5 \mathrm{~V}
$$

Loading effect
$=(18-13.5) / 18=\mathbf{2 5 \%}$
(e) $\mathrm{C}-\mathrm{C}$ Tsai

Circuit Analysis Using Multisim

Use Multisim to find the following quantities for the circuit shown
a) Total resistance, $\boldsymbol{R}_{\boldsymbol{T}}$

Voltages $\boldsymbol{V}_{\mathbf{2}}$ and $\boldsymbol{V}_{\mathbf{4}}$
c) Currents I_{T}, I_{1}, and I_{2}

Get R_{T} Using Multisim

- Construct the circuit for determining the total resistance R_{T}

(8) $\mathrm{C}-\mathrm{C}$ Tsai

Get Voltages and currents Using Multisim

(0) C-C Tsai

Kernel abilities

1. Can recognize which parts are in series or parallel for a series-parallel circuit.
2. Can compute the total resistance $\boldsymbol{R}_{\mathrm{t}}$ of resistors $R_{1} \sim R_{\mathrm{n}}$ in series-parallel.
3. Can recognize KVL and KCL for applying a seriesparallel circuit.
4. Can recognize the voltage divider and current divider for applying a series-parallel circuit.
5. Can recognize the loading effect for measuring voltage and current.
(4) ${ }^{\text {c-C Tsai }}$ 22

Problem 10: Find $\boldsymbol{R}_{a b}$ and $\boldsymbol{R}_{b c}$

(2) C-C Tsai

