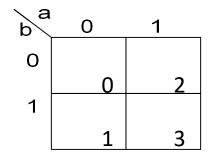
Introduction K-MAP

THE KARNAUGH MAP METHOD

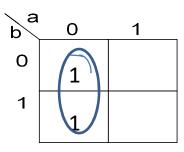
- The algebraic procedure of combining various terms and applying to them the rule Xx + Xx1 = X
- A Karnaugh map is, actually, a modified form of truth table in which the arrangement of the combinations is very much convenient.
- Each n-variable map consists of 2n cells (squares) representing all possible combination of these variables.



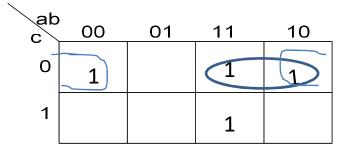
Location of min terms in 2 variable map

ab c	00	01	11	10
0				
	0	2	6	4
1				
	1	3	7	5

Location of min terms in 3 var map



Map for the functions $f(a,b)=\sum (0,1)=a'$

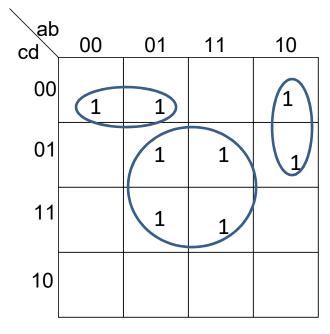


$$f(a,b,c)=\sum (0,4,6)=ac'+b'c'$$

ab	00	01	11	10
00	m_0	$m_{_4}$	m_{12}	m_{8}
01	m_1	m_{5}	m_{13}	m ₉
11	m_3	m_{7}	m_{15}	m_{11}
10	m_2	m_{6}	m_{14}	m_{10}

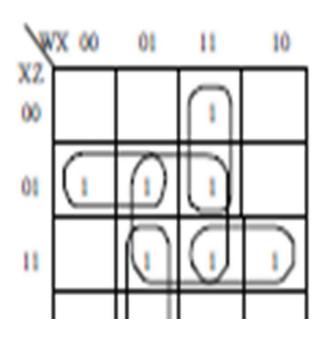
Location of min terms in 4 variable map

Example (1): Simplify f (a, b, c, d) = Σ (0, 4, 5, 7, 8,9, 13, 15)

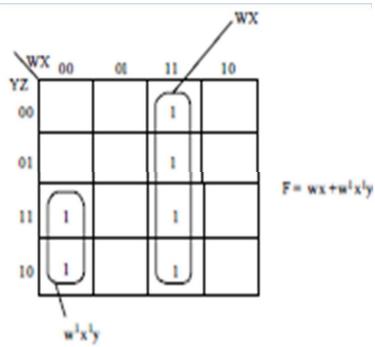


f(a,b,c,d)=a'c'd'+ab'c'+ad

Example (2): The function $f(w, x, y, z) = \Sigma(0, 5, 6, 7, 11, 12, 13, 15)$ has only one irredundant form, as opposed to the preceding example. This unique minimal expressions is derived from below figure and is found to be f = wxy1 + wyz + w1xy + w1y1z

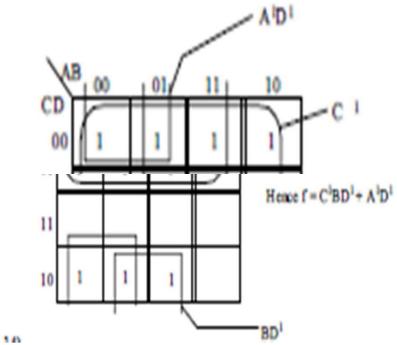


Example (3): Simplify f (w, x, y, z) = Σ (2, 3, 12, 13,14, 15)

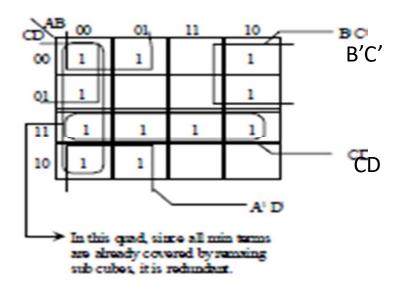


f(w,x,y,z)=wx=w'x'y

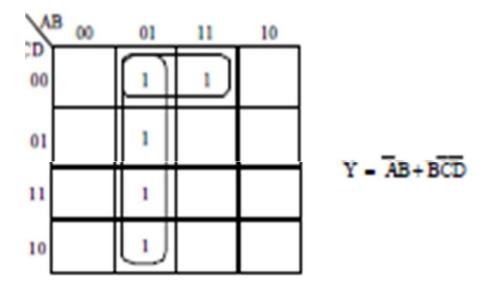
Example(4): Simplify f (A, B, C, D) = Σ (0, 1, 2, 3, 4,5, 6, 8, 9, 12, 13.



Example(5): f (A, B, C, D) = Σ (0, 1, 2, 3, 4, 6, 7, 8, 9, 11,15) f(ABCD) = B'C' + CD + A'D



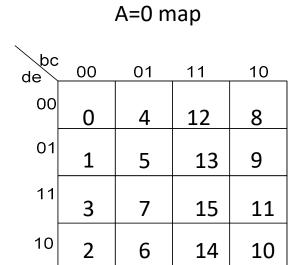
Example: Minimize by using Karnaugh map



$$Y(A,B,C,D) = A'B + BC'D'$$

THE FIVE – VARIABLE MAP

- 32 minterms require 32 squares in the k-map.
- Minterms 0-15 belong to the squares with variable V=0, and minterms 16-32 belong to the squares with variable V=1
- Each square in V' is also adjacent to a square in V (one is above the other)
- Minterm 4 is adjacent to 20, and minterm 15 is to 31

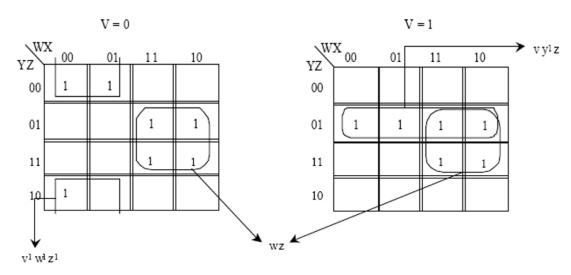


\				
bc de	00	01	11	10
00	16	20	28	24
01	17	21	29	25
11	19	23	31	27
10	18	22	30	26

A=1 map

Location of minterms in a 5-variable k-map

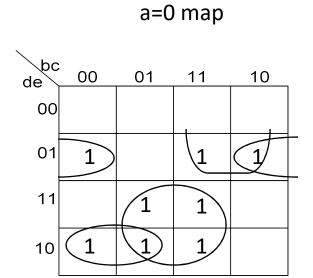
Example : With the aid of the map, minimise the function. f $(v, w, x, y, z) = \Sigma (0, 2, 4, 6, 9, 11, 13, 15, 17, 21, 25, 27, 29, 31)$



 $f = (v, w, x, y, z) = wz + vy^1z + v^1w^1z^1$

f(v,w,x,y,z) = wz+vy'z+v'w'z'

Example: With the aid of the map, minimise the function. f(a, b, c, d, e) = S(1, 2, 6, 7, 9, 13, 14, 15, 17, 22, 23, 25, 29, 30, 31)

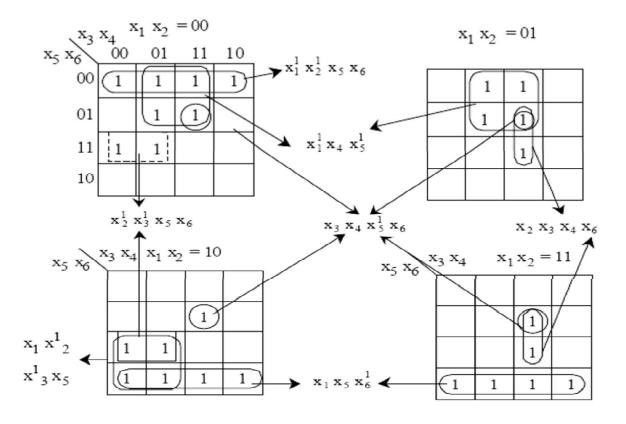


a=1 map

f(a,b,c,d,e) = cd+bd'e+c'd'e

6-VARIABLE MAP

- A six variable map contains 26= 64 cells.
- Below example x1---x6 are input variables.
- *Example*: Simplify $f(x1, x2, x3, x4, x5, x6) = \Sigma(0,3, 4, 5, 7, 8, 12, 13, 20, 21, 28, 29, 31, 34, 35, 38, 39,42, 45, 46, 50, 54, 58, 61, 62, 63).$



THANK YOU

THANK YOU