K-MAP(Don't Care Combinations)

DON'T CARE COMBINATIONS

DON’T CARE COMBINATIONS

- So far the functions considered have been completely specified for every combination of the variables. There exist situations, however, where, while a function is to assume the value 1 for some combinations and the value o for others, it mayassume either value for a number of combinations. Combinations for which the value of the function is not specified are called don't care combinations. The value of the function for such combinations is denoted by a φ (or d).

For example in figure shown below the d's can be used as 1's to form a subcube consisting of four 1's.

Where in the below figure the d's need not be used

Example : $\mathrm{f}=\Sigma(\mathrm{o}, 2,4,6,8)+\Sigma \mathrm{d}(10,11,12,13,14,15)$

Example : f (A, B, C, D) $=(1,3,5,8,9,11,15)+d(2,13)$

Example : $\mathrm{f}(\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D})=\pi(1,2,3,8,9,10,11,14)+\mathrm{d}(7,15)$

Switching Functions
Switching algebra: Boolean algebra with the set of elements $K=\{0,1\}$
If there are n variables, we can define switching functions. Sixteen functions of two variables (Table 2.3):

AB	f0	f1	f2	f3	f4	$f 5$	f6	f7	f8	f9	f10	f11	f12	$f 13$	$f 14$	f15
00	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1
01	0	0	1	1	0	0	1	1	0	0	1	1	0	0	1	1
10	0	0	0	0	1	1	1	1	0	0	0	0	1	1	1	1
11	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1

Cont...

A switching function can be represented by a table as above, or by a switching expression as follows:
$f O(A, B)=o, f 6(A, B)=A B^{\prime}+A^{\prime} B, f 11(A, B)=A B+A^{\prime} B+$ $A^{\prime} B^{\prime}=A^{\prime}+B, \ldots$
Value of a function can be obtained by plugging in the values of all variables:
The value of $f 6$ when $A=1$ and $B=o$ is:

$$
\begin{aligned}
& =O+1=1 \\
& 1 \cdot 0^{\prime}+1^{6} .0
\end{aligned}
$$

Truth Tables

Shows the value of a function for all possible input combinations.
Truth tables for OR, AND, and NOT (Table 2.4):

$a b$	$f(a, b)=a+b$	$a b$	$F(a, b)=a b$	a	$F(a)=a^{\prime}$
00	0	00	0	0	1
01	1	01	0	1	0
10	1	10	0		
11	1	11	1		

Truth Tables (2)
Truth tables for $f(A, B, C)=A B+A^{\prime} C+A C^{\prime}$ (Table 2.5)

$A B C$	$f(A, B, C)$	$A B C$	$F(A, B, C)$
000	0	FFF	F
001	1	FFT	T
010	0	FTF	F
011	1	FTT	T
100	1	TFF	T
101	0	TFT	F
110	1	TTF	T
111	1	TTT	T

Algebraic Forms of Switching Functions
Example: Given $f(A, B, Q, Z)=A^{\prime} B^{\prime} Q^{\prime} Z^{\prime}+A^{\prime} B^{\prime} Q^{\prime} Z+$ $A^{\prime} B Q Z^{\prime}+A^{\prime} B Q Z$,
express $f(A, B, Q, Z)$ and $f^{\prime}(A, B, Q, Z)$ in minterm list form.
$f(A, B, Q, Z)=A^{\prime} B^{\prime} Q^{\prime} Z^{\prime}+A^{\prime} B^{\prime} Q^{\prime} Z+A^{\prime} B Q Z^{\prime}+A^{\prime} B Q Z$
$=m o+m 1+m 6+m 7$
$=\sum m(0,1,6,7)$
$f^{\prime}(A, B, Q, Z)=m 2+m 3+m 4+m 5+m 8+m 9+m 10+m 11$
$+m 12+m 13+m 14+m 15$
$=\sum m(2,3,4,5,8,9,10,11,12,13,14,15)(2.6)$
$A B+(A B)^{\prime}=1$ and $A B+A^{\prime}+B^{\prime}=1$, but $A B+A^{\prime} B^{\prime}$

Algebraic Forms of Switching Functions
A maxterm is a sum term in which all the variables appear exactly once either
complemented or uncomplemented.
Canonical Product of Sums (canonical POS):
Represented as a product of maxterms only.
Example: f2(A,B,C)=

$$
(A+B+C)\left(A+B+C^{\prime}\right)\left(A^{\prime}+B+C\right)\left(A^{\prime}+B+C^{\prime}\right)(2.7)
$$

Maxterms of three variables:

Cont...
$f 2(A, B, C)=M o M 1 M 4 M 5$

$$
=\Pi M(0,1,4,5) \text { (maxterm list form) }
$$

The truth table for $f 2(A, B, C)$:
Truth tables of $f_{1}(A, B, C)$ of Eq. (2.3) and $f 2(A, B, C)$ of
Eq. (2.7) are identical.
Hence, $f_{1}(A, B, C)=\sum m(2,3,6,7)$

$$
\begin{aligned}
& =f 2(A, B, C) \\
& =\Pi M(0,1,4,5)(2.10)
\end{aligned}
$$

Cont...

Example: Given $\mathrm{f}(\mathrm{A}, \mathrm{B}, \mathrm{C})=$
$\left(A+B+C^{\prime}\right)\left(A+B^{\prime}+C^{\prime}\right)\left(A^{\prime}+B+C^{\prime}\right)\left(A^{\prime}+B^{\prime}+C^{\prime}\right)$, construct the truth table and express in both maxterm and minterm form.
$f(A, B, C)=M_{1} M_{3} M_{5} M_{7}=\Pi M(1,3,5,7)=\sum m(0,2,4,6)$
Relationship between minterm mi and maxterm M_{i} : For $f(A, B, C),(m 1)^{\prime}=\left(A^{\prime} B^{\prime} C\right)^{\prime}=A+B+C^{\prime}=M 1$
In general, $\left(m_{i}\right)^{\prime}=M_{i}(2.11)$
$\left(M_{i}\right)^{\prime}=\left(\left(m_{i}\right)^{\prime}\right)^{\prime}=m i(2.12)$

