K-MAP(Don't Care Combinations)

DON'T CARE COMBINATIONS

DON'T CARE COMBINATIONS

• So far the functions considered have been completely specified for every combination of the variables. There exist situations, however, where, while a function is to assume the value 1 for some combinations and the value 0 for others, it mayassume either value for a number of combinations. Combinations for which the value of the function is not specified are called don't care combinations. The value of the function for such combinations is denoted by a φ (or d).

For example in figure shown below the d's can be used as 1's to form a subcube consisting of four 1's.

Where in the below figure the d's need not be used

Example : $f = \Sigma (0, 2, 4, 6, 8) + \Sigma d (10, 11, 12, 13, 14, 15)$

Example : f (A, B, C, D) = (1, 3, 5, 8, 9, 11, 15) + d (2,13)

f= ab'c'+c'd+ad+b'd

Example : f (A, B, C, D) = π (1, 2, 3, 8, 9, 10, 11, 14) + d (7, 15)

f = (A'+B)(A'+C')(B+C')(B+D')

Switching Functions

Switching algebra: Boolean algebra with the set of elements $K = \{0, 1\}$

If there are *n variables, we can define switching functions*. Sixteen functions of two variables (Table 2.3):

AB	fO	f1	f2	f3	f4	f5	f6	f7	f8	f9	f10	f11	f12	f13	f14	f15
00	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1
01	0	0	1	1	0	0	1	1	0	0	1	1	0	0	1	1
10	0	0	0	0	1	1	1	1	0	0	0	0	1	1	1	1
11	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1

Cont...

A switching function can be represented by a table as above, or by a switching expression as follows: fo(A,B)=o, fb(A,B) = AB' + A'B, f11(A,B) = AB + A'B + A'B' = A' + B, ...

Value of a function can be obtained by plugging in the values of all variables:

The value of *f*6 *when A* = 1 *and B* = 0 *is*:

= O + 1 = 1.1.0'+1'.0

Truth Tables

Shows the value of a function for all possible input combinations.

Truth tables for OR, AND, and NOT (Table 2.4):

ab	f(a,b)=a+b	ab	F(a,b)=ab	а	F(a)=a'
00	0	00	0	0	1
01	1	01	0	1	0
10	1	10	0		
11	1	11	1		

$\frac{\text{Truth Tables (2)}}{\text{Truth tables for } f(A,B,C)} = AB + A'C + AC' (Table 2.5)$

ABC	f(A,B,C)	ABC	F(A,B,C)
000	0	FFF	F
001	1	FFT	Т
010	0	FTF	F
011	1	FTT	Т
100	1	TFF	Т
101	0	TFT	F
110	1	TTF	Т
111	1	TTT	Т

<u>Algebraic Forms of Switching Functions</u>

Example: Given f(A,B,Q,Z) = A'B'Q'Z' + A'B'Q'Z + A'BQZ' + A'BQZ,

express f(A,B,Q,Z) and f'(A,B,Q,Z) in minterm list form. f(A,B,Q,Z) = A'B'Q'Z' + A'B'Q'Z + A'BQZ' + A'BQZ

= m0 + m1 + m6 + m7

 $= \sum m(0, 1, 6, 7)$

f'(A,B,Q,Z) = m2 + m3 + m4 + m5 + m8 + m9 + m10 + m11 + m12 + m13 + m14 + m15

 $= \sum m(2, 3, 4, 5, 8, 9, 10, 11, 12, 13, 14, 15) (2.6)$ AB + (AB)' = 1 and AB + A' + B' = 1, but AB + A'B' <u>Algebraic Forms of Switching Functions</u>

A maxterm is a sum term in which all the variables appear exactly once either

complemented or uncomplemented.

Canonical Product of Sums (canonical POS):

Represented as a product of maxterms only.

Example: f2(A,B,C) =

(A+B+C)(A+B+C')(A'+B+C)(A'+B+C')(2.7)

Maxterms of three variables:

Cont...

 $f_2(A,B,C) = MoM1M4M5$ $= \prod M(0,1,4,5) (maxterm list form)$ The truth table for $f_2(A,B,C)$: Truth tables of $f_1(A,B,C)$ of Eq. (2.3) and $f_2(A,B,C)$ of Eq. (2.7) are identical. Hence, $f_1(A,B,C) = \sum m (2,3,6,7)$ $= f_2(A,B,C)$ $= \prod M(0,1,4,5) (2.10)$

Cont...

Example: Given f(A,B,C) =

(A+B+C')(A+B'+C')(A'+B+C')(A'+B'+C'), construct the truth table and express in both maxterm and minterm form.

 $f(A,B,C) = M_1M_3M_5M_7 = \prod M(1,3,5,7) = \sum m(0,2,4,6)$

Relationship between minterm m_i and maxterm M_i : For f(A,B,C), $(m_1)' = (A'B'C)' = A + B + C' = M_1$ In general, $(m_i)' = M_i$ (2.11) $(M_i)' = ((m_i)')' = mi$ (2.12)