Combinational Circuit Design (Magnitude Comparator)

Magnitude Comparator

- The comparison of two numbers
- outputs: $\mathrm{A}>\mathrm{B}, \mathrm{A}=\mathrm{B}, \mathrm{A}<\mathrm{B}$
- Design Approaches
- the truth table
- $2^{2 n}$ entries - too cumbersome for large n
- use inherent regularity of the problem
- reduce design efforts
- reduce human errors

Magnitude Comparator

How can we find $\mathrm{A}>\mathrm{B}$?
How many rows would a truth table have?

$$
2^{8}=256
$$

Magnitude Comparator

Find $\mathrm{A}>\mathrm{B}$

If $\mathrm{A}=1001$ and
$B=0111$
is $\mathrm{A}>\mathrm{B}$?
Why?

$$
\begin{aligned}
& \text { Because A3 > B3 } \\
& \text { i.e. } \mathrm{A}_{3} \cdot \mathrm{~B}^{\prime}=1
\end{aligned}
$$

Therefore, one term in the logic equation for $\mathrm{A}>\mathrm{B}$ is A3. B3'

Magnitude Comparator

$$
\begin{aligned}
\mathrm{A}>\mathrm{B}= & \mathrm{A} 3 \cdot \mathrm{~B} 3 \\
& +\mathrm{C} 3 \cdot \mathrm{~A} 2 \cdot \mathrm{~B} 2 \\
& +\ldots .
\end{aligned}
$$

Because A3 $=\mathrm{B}_{3}$ and
$\mathrm{A} 2=\mathrm{B} 2$ and
$\mathrm{A} 1>\mathrm{B} 1$
i.e. $\mathrm{C}_{3}=1$ and $\mathrm{C} 2=1$ and

A1. B1' $=1$

Therefore, the next term in the logic equation for $\mathrm{A}>\mathrm{B}$ is
C3. C2. A1. B1 ${ }^{\prime}$

Magnitude Comparison

- Algorithm -> logic
$-\mathrm{A}=\mathrm{A}_{3} \mathrm{~A}_{2} \mathrm{~A}_{1} \mathrm{~A}_{0} ; \mathrm{B}=\mathrm{B}_{3} \mathrm{~B}_{2} \mathrm{~B}_{1} \mathrm{~B}_{0}$
$-\mathrm{A}=\mathrm{B}$ if $\mathrm{A}_{3}=\mathrm{B}_{3}, \mathrm{~A}_{2}=\mathrm{B}_{2}, \mathrm{~A}_{1}=\mathrm{B}_{1}$ and $\mathrm{A}_{1}=\mathrm{B}_{1}$
- Test each bit:
- equality: $\mathrm{x}_{\mathrm{i}}=\mathrm{A}_{\mathrm{i}} \mathrm{B}_{\mathrm{i}}+\mathrm{A}_{\mathrm{i}}{ }^{\prime} \mathrm{B}_{\mathrm{i}}{ }^{\prime}$
- $(A=B)=x_{3} \mathrm{X}_{2} \mathrm{x}_{1} \mathrm{x}_{0}$
- More difficult to test less than/greater than
$-(\mathrm{A}>\mathrm{B})=\mathrm{A}_{3} \mathrm{~B}_{3}{ }^{\prime}+\mathrm{x}_{3} \mathrm{~A}_{2} \mathrm{~B}_{2}{ }^{\prime}+\mathrm{x}_{3} \mathrm{X}_{2} \mathrm{~A}_{1} \mathrm{~B}_{1}{ }^{\prime}+\mathrm{x}_{3} \mathrm{x}_{2} \mathrm{x}_{1} \mathrm{~A}_{0} \mathrm{~B}_{0}{ }^{\prime}$
$-(A<B)=A_{3}^{\prime} B_{3}+x_{3} A_{2}^{\prime} B_{2}+x_{3} x_{2} A_{1}{ }^{\prime} B_{1}+x_{3} x_{2} x_{1} A_{0}{ }^{\prime} B_{o}$
- Start comparisons from high-order bits
- Implementation
$-\mathrm{x}_{\mathrm{i}}=\left(\mathrm{A}_{\mathrm{i}} \mathrm{B}_{\mathrm{i}}^{\prime}{ }^{\prime}+\mathrm{A}_{\mathrm{i}}^{\prime} \mathrm{B}_{\mathrm{i}}\right)^{\prime}$

Magnitude Comparison

COMPARING INPUTS				CASCADING INPUTS			OUTPUTS		
$\mathrm{A}_{3}, \mathrm{~B}_{3}$	$\mathrm{A}_{2} . \mathrm{B}_{2}$	$\mathrm{A}_{1}, \mathrm{~B}_{1}$	$A_{0} . B_{0}$	$I_{A>B}$	$\mathrm{l}_{\mathrm{A}<\mathrm{B}}$	$\mathrm{I}_{\mathrm{A}=\mathrm{B}}$	$O_{A>B}$	$\mathrm{O}_{\mathrm{A}<\mathrm{B}}$	$\mathrm{O}_{\mathrm{A}=\mathrm{B}}$
$A_{3}>B_{3}$	\times	\times	\times	\times	\times	\times	H	L	L
$A_{3}<B_{3}$	\times	\times	\times	\times	\times	\times	L	H	L
$\mathrm{A}_{3}=\mathrm{B}_{3}$	$A_{2}>B_{2}$	\times	\times	\times	\times	\times	H	L	L
$A_{3}=B_{3}$	$A_{2}<B_{2}$	\times	\times	\times	\times	\times	L	H	L
$\mathrm{A}_{3}=\mathrm{B}_{3}$	$A_{2}=B_{2}$	$\mathrm{A}_{1}>\mathrm{B}_{1}$	\times	\times	\times	\times	H	L	L
$\mathrm{A}_{3}=\mathrm{B}_{3}$	$A_{2}=B_{2}$	$A_{1}<B_{1}$	\times	\times	\times	\times	L	H	L
$A_{3}=B_{3}$	$A_{2}=B_{2}$	$A_{1}=B_{1}$	$A_{0}>B_{0}$	\times	\times	\times	H	L	L
$\mathrm{A}_{3}=\mathrm{B}_{3}$	$\mathrm{A}_{2}=\mathrm{B}_{2}$	$A_{1}=B_{1}$	$\mathrm{A}_{0}<B_{0}$	\times	\times	\times	L	H	L
$\mathrm{A}_{3}=\mathrm{B}_{3}$	$A_{2}=B_{2}$	$A_{1}=B_{1}$	$A_{0}=B_{0}$	H	L	L	H	L	L
$A_{3}=B_{3}$	$A_{2}=B_{2}$	$\mathrm{A}_{1}=\mathrm{B}_{1}$	$A_{0}=B_{0}$	L	H	L	L	H	L
$\mathrm{A}_{3}=\mathrm{B}_{3}$	$A_{2}=B_{2}$	$\mathrm{A}_{1}=\mathrm{B}_{1}$	$\mathrm{A}_{0}=\mathrm{B}_{0}$	\times	\times	H	L	L	H
$A_{3}-B_{3}$	$A_{2}=B_{2}$	$\mathrm{A}_{1}=\mathrm{B}_{1}$	$\mathrm{A}_{0}=\mathrm{B}_{0}$	L	L	L	H	H	L
$\mathrm{A}_{3}=\mathrm{B}_{3}$	$A_{2}=B_{2}$	$\mathrm{A}_{1}=\mathrm{B}_{1}$	$\mathrm{A}_{\mathrm{O}}=\mathrm{B}_{\mathrm{O}}$	H	H	L	L	L	L

H $=$ HIGH Voltage Level
L $=$ LOW Voltage Level

Magnitude Comparator

Real-world application

- Thermostat controller

Summary

- Magnitude comparators allow for data comparison
- Can be built using and-or gates
- Greater/less than requires more hardware than equality

