Combinational Circuit Design (Magnitude Comparator)

- The comparison of two numbers
 - outputs: A>B, A=B, A<B</p>
- Design Approaches
 - the truth table
 - 2²ⁿ entries too cumbersome for large n
 - use inherent regularity of the problem
 - reduce design efforts A[3..0] — Magnitude Compare — A < B
 A < B
 A < B

A > B

B[3..0]

How can we find A > B? How many rows would a truth table have?

 $2^8 = 256$

Find A > B

If A = 1001 and B = 0111 is A > B? Why? Because A3 > B3 i.e. A3 . B3' = 1

Therefore, one term in the logic equation for A > B is A3 . B3'

D

If A = 1010 and B = 1001is A > B? Why?

$$A > B = A3 \cdot B3'$$

+ C3 · A2 · B2'
+
Because A3 = B3 and
A2 = B2 and
A1 > B1
i.e. C3 = 1 and C2 = 1 and
A1 · B1' = 1

Therefore, the next term in the logic equation for A > B is C3 . C2 . A1 . B1'

Magnitude Comparison

- Algorithm -> logic
 - $A = A_3 A_2 A_1 A_0$; $B = B_3 B_2 B_1 B_0$
 - $A = B \text{ if } A_3 = B_3, A_2 = B_2, A_1 = B_1 \text{ and } A_1 = B_1$
- Test each bit:
 - equality: $x_i = A_i B_i + A_i' B_i'$
 - (A=B) = $x_3 x_2 x_1 x_0$
- More difficult to test less than/greater than
 - $(A>B) = A_3B_3' + x_3A_2B_2' + x_3x_2A_1B_1' + x_3x_2x_1A_0B_0'$
 - $(A < B) = A_3'B_3 + x_3A_2'B_2 + x_3x_2A_1'B_1 + x_3x_2x_1A_0'B_0$
 - Start comparisons from high-order bits
- Implementation

$$- x_i = (A_i B_i' + A_i' B_i)'$$

Magnitude Comparison

TRUTH TABLE

COMPARING INPUTS				CASCADING INPUTS			OUTPUTS		
A _{3,} B ₃	A ₂ , B ₂	A ₁ , B ₁	A ₀ , B ₀	I _{A>B}	I _{A < B}	I _{A-B}	O _{A>B}	O _{A < B}	O _{A-B}
A3>B3	××	×	×	×	×	××	н	L	L
43 < B3	X	X	X	X	X	X	L	н	L
$A_3 = B_3$	$A_2 > B_2$	X	X	X	×	X	н	L	L
$A_3 = B_3$	A2 < B2	×	×	×	×	×	L	н	L
$A_3 = B_3$	$A_2 = B_2$	A1>B1	××	×	×	×	н	L	L
$A_3 = B_3$	$A_2 = B_2$	A1 < B1	X	X	×	××××	L	н	L
$A_3 = B_3$	$A_2 = B_2$	$A_1 = B_1$	A ₀ >B ₀	X	××	X	н	L	L
$A_3 = B_3$	$A_2 = B_2$	$A_1 = B_1$	$A_0 < B_0$	×	×	×	L	н	L
$A_3 = B_3$	$A_2 = B_2$	A1=B1	$A_0 = B_0$	н	L	L	н	L	L
$A_3 = B_3$	$A_2 = B_2$	$A_1 = B_1$	$A_0 = B_0$	L	н	L	L	н	L
$A_3 = B_3$	$A_2 = B_2$	$A_1 = B_1$	$A_0 = B_0$	X	×	н	L	L	н
43-B3	$A_2 = B_2$	$A_1 = B_1$	$A_0 = B_0$	L	L	L	н	Н	L
$A_3 = B_3$	$A_2 = B_2$	$A_1 = B_1$	$A_0 = B_0$	н	н	L	L	L	L

 $\begin{array}{l} \mathsf{H} = \mathsf{HIGH} \; \mathsf{Voltage} \; \mathsf{Level} \\ \mathsf{L} = \mathsf{LOW} \; \mathsf{Voltage} \; \mathsf{Level} \end{array}$

X = Immaterial

Real-world application

• Thermostat controller

Summary

- Magnitude comparators allow for data comparison
 Can be built using and-or gates
- Greater/less than requires more hardware than equality