Combinational Circuit(Decoder)

Overview

- Binary decoders
- Converts an n-bit code to a single active output
- Can be developed using AND/OR gates
- Can be used to implement logic circuits.
- Binary encoders
- Converts one of 2^{n} inputs to an n-bit output
- Useful for compressing data
- Can be developed using AND/OR gates
- Both encoders and decoders are extensively used in digital systems

Binary Decoder

- Black box with n input lines and 2^{n} output lines
- Only one output is a 1 for any given input

2-to-4 Binary Decoder

Truth Table:

\mathbf{X}	\mathbf{Y}	$\mathbf{F}_{\mathbf{0}}$	$\mathbf{F}_{\mathbf{1}}$	$\mathbf{F}_{\mathbf{2}}$	$\mathbf{F}_{\mathbf{3}}$
0	0	1	0	0	0
0	1	0	1	0	0
1	0	0	0	1	0
1	1	0	0	0	1

- From truth table, circuit for 2x4 decoder is:
- Note: Each output is a 2-variable minterm ($\mathrm{X}^{\prime} \mathrm{Y}^{\prime}, \mathrm{X}^{\prime} \mathrm{Y}, \mathrm{XY}$ ' or XY)

3-to-8 Binary Decoder

Truth Table:

\mathbf{x}	\mathbf{y}	\mathbf{z}	$\mathbf{F}_{\mathbf{0}}$	$\mathbf{F}_{\mathbf{1}}$	$\mathbf{F}_{\mathbf{2}}$	$\mathbf{F}_{\mathbf{3}}$	\mathbf{F}_{4}	\mathbf{F}_{5}	\mathbf{F}_{6}	\mathbf{F}_{7}
0	0	0	1	0	0	0	0	0	0	0
0	0	1	0	1	0	0	0	0	0	0
0	1	0	0	0	1	0	0	0	0	0
0	1	1	0	0	0	1	0	0	0	0
1	0	0	0	0	0	0	1	0	0	0
1	0	1	0	0	0	0	0	1	0	0
1	1	0	0	0	0	0	0	0	1	0
1	1	1	0	0	0	0	0	0	0	1

Implementing Functions Using Decoders

- Any n-variable logic function can be implemented using a single n -to- 2^{n} decoder to generate the minterms
- OR gate forms the sum.
- The output lines of the decoder corresponding to the minterms of the function are used as inputs to the or gate.
- Any combinational circuit with n inputs and m outputs can be implemented with an $n-$ to- 2^{n} decoder with m OR gates.
- Suitable when a circuit has many outputs, and each output function is expressed with few minterms.

Implementing Functions Using Decoders

- Example: Full adder

$$
\begin{aligned}
& S(x, y, z)=S(1,2,4,7) \\
& C(x, y, z)=S(3,5,6,7)
\end{aligned}
$$

\mathbf{x}	\mathbf{y}	\mathbf{z}	\mathbf{C}	\mathbf{S}
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	1	1

Standard MSI Binary Decoders Example

74138 (3-to-8 decoder)

(a)
(a) Logic circuit.
(b) Package pin configuration.
(c) Function table.

Building a Binary Decoder with NAND Gates

- Start with a 2-bit decoder Note: use of NANDs
- Add an enable signal (E)
only one o active!

$$
\text { if } \mathrm{E}=0
$$

Use two 3 to 8 decoders to make 4 to 16 decoder

- Enable can also be active high
- In this example, only one decoder can be active at a time.
- x, y, z effectively select output line for w

Summary

- Decoder allows for generation of a single binary output from an input binary code
- For an n-input binary decoder there are 2^{n} outputs
- Decoders are widely used in storage devices (e.g. memories)
- We will discuss these in a few weeks

