Combinational Circuit(Decoder)

Overview

- Binary decoders
 - Converts an n-bit code to a single active output
 - Can be developed using AND/OR gates
 - Can be used to implement logic circuits.
- Binary encoders
 - Converts one of 2ⁿ inputs to an n-bit output
 - Useful for compressing data
 - Can be developed using AND/OR gates
- Both encoders and decoders are extensively used in digital systems

Binary Decoder

- Black box with n input lines and 2^n output lines
- Only one output is a 1 for any given input

2-to-4 Binary Decoder

Truth Table:

Χ	Y	F ₀	F ₁	F ₂	F ₃
0	0	1	0	0	0
0	1		1	0	0
1	0	0	0	1	0
1	1	0	0	0	1

- From truth table, circuit for 2x4 decoder is:
- Note: Each output is a 2-variable minterm (X'Y', X'Y, XY' or XY)

3-to-8 Binary Decoder

Implementing Functions Using Decoders

- Any n-variable logic function can be implemented using a single n-to-2ⁿ decoder to generate the minterms
 - OR gate forms the sum.
 - The output lines of the decoder corresponding to the minterms of the function are used as inputs to the or gate.
- Any combinational circuit with n inputs and m outputs can be implemented with an n-to-2ⁿ decoder with m OR gates.
- Suitable when a circuit has many outputs, and each output function is expressed with few minterms.

Implementing Functions Using Decoders

Example: Full adder
S(x, y, z) = S (1,2,4,7)
C(x, y, z) = S (3,5,6,7)

X	у	Z	С	S
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	1	1
-				

Standard MSI Binary Decoders Example

- (a) Logic circuit.
- (b) Package pin configuration.
- (c) Function table.

(c)

Building a Binary Decoder with NAND Gates

<u>Use two 3 to 8 decoders to make 4 to 16 decoder</u>

- Enable can also be active high
- In this example, only one decoder can be active at a time.
- x, y, z effectively select output line for w

Summary

- Decoder allows for generation of a single binary output from an input binary code
 - For an n-input binary decoder there are 2^n outputs
- Decoders are widely used in storage devices (e.g. memories)
 - We will discuss these in a few weeks