# Sequential Circuit(D-Latch & D-Flip Flop)



#### **Cross-coupled Inverters**

A stable value can be stored at inverter outputs



State 1



State 2

#### **D** Latch

 $Q_0$  indicates the previous state (the previously stored value)





Input value D is passed to output Q when C is high Input value D is ignored when C is low



Z only changes when E is high If E is high, Z will follow X



The D latch stores data indefinitely, regardless of input D values, if C = 0 Forms basic storage element in computers

#### Symbols for Latches



25

SR latch is based on NOR gates S'R' latch based on NAND gates D latch can be based on either. D latch sometimes called transparent latch

#### Summary

- With additional gates, an S-R latch can be converted to a D latch (D stands for data)
- D latch is simple to understand conceptually When C = 1, data input D stored in latch and output as Q
  When C = 0, data input D ignored and previous latch value output at Q

# Overview

• Latches respond to trigger levels on control inputs

– Example: If G = 1, input reflected at output

- Difficult to precisely time when to store data with latches
- Flip flips store data on a rising or falling trigger edge.
  - Example: control input transitions from 0 -> 1, data input appears at output
  - Data remains stable in the flip flop until until next rising edge.
- Different types of flip flops serve different functions
- Flip flops can be defined with characteristic functions.



When C is high, D passes from input to output (Q)

#### **Clocking Event**

### What if the output only changed on a C transition?

Positive edge triggered



#### Master-Slave D Flip Flop

Consider two latches combined together Only one *C* value active at a time Output changes on falling edge of the clock



#### <u>D Flip-Flop</u>

### Stores a value on the positive edge of *C* Input changes at other times have no effect on output





D gets latched to Q on the rising edge of the clock.

#### Clocked D Flip-Flop

### Stores a value on the positive edge of *C* Input changes at other times have no effect on output



### Positive and Negative Edge D Flip-Flop

# D flops can be triggered on positive or negative edge Bubble before *Clock (C)* input indicates negative edge trigger



# Summary

- Flip flops are powerful storage elements
  - They can be constructed from gates and latches!
- D flip flop is simplest and most widely used
- Asynchronous inputs allow for clearing and presetting the flip flop output
- Multiple flops allow for data storage

– The basis of computer memory!

• Combine storage and logic to make a computation circuit

# THANK YOU