Sequential Circuit(D-Latch \& D-Flip Flop)

Sequential Circuits

synchronizes when current state changes happen
keeps system well-behaved
makes it easier to design and build large systems

Cross-coupled Inverters

A stable value can be stored at inverter outputs

State 1

State 2

D Latch

Q_{0} indicates the previous state (the previously stored value)

D	C	Q	Q^{\prime}
0	1	P	1
1	1	1	0
X	0	R_{0}	$\mathrm{Q}_{0}{ }^{\prime}$

X	Y	C	O	O^{\prime}
0	0	1	Q_{0}	$\mathrm{Q}_{0}{ }^{\prime}$
Store				
0	1	1	0	1
Reset				
1	0	1	1	0
Set				
1	1	1	1	1
X	X	0	Q_{0}	Q_{0},
Disallowed				

D Latch

D	C	Q	Q^{\prime}
0	1	0	1
1	1	1	0
X	0	Q_{0}	Q_{0},

Input value D is passed to output Q when C is high Input value D is ignored when C is low

D Latch

The D latch stores data indefinitely, regardless of input D values, if $\mathrm{C}=0$
Forms basic storage element in computers

Symbols for Latches

SR latch is based on NOR gates S'R' latch based on NAND gates
D latch can be based on either.
D latch sometimes called transparent latch

Summary

- With additional gates, an S-R latch can be converted to a D latch (D stands for data)
- D latch is simple to understand conceptually

When $\mathrm{C}=1$, data input D stored in latch and output as
Q
When $\mathrm{C}=0$, data input D ignored and previous latch value output at Q

Overview

- Latches respond to trigger levels on control inputs
- Example: If G = 1, input reflected at output
- Difficult to precisely time when to store data with latches
- Flip flips store data on a rising or falling trigger edge.
- Example: control input transitions from o-> 1, data input appears at output
- Data remains stable in the flip flop until until next rising edge.
- Different types of flip flops serve different functions
- Flip flops can be defined with characteristic functions.

D Latch

D	C	Q	Q,
0	1	0	1
1	1	1	0
X	0	Q_{0}	Q_{0},

S	R	C	Q	Q^{\prime}
0	0	1	Q_{0}	$\mathrm{Q}_{0}{ }^{\prime}$
Store				
0	1	1	0	1
Reset				
1	0	1	1	0
Set				
1	1	1	1	1
X	X	0	Q_{0}	$\mathrm{Q}_{0}{ }^{\prime}$
Disallowed	Store			

When C is high, D passes from input to output (Q)

Clocking Event

What if the output only changed on a C transition?
Positive edge triggered

Master-Slave D Flip Flop

Consider two latches combined together Only one C value active at a time Output changes on falling edge of the clock

D Flip-Flop

Stores a value on the positive edge of C
Input changes at other times have no effect on output

Positive edge triggered

D gets latched to Q on the rising edge of the clock.

Clocked D Flip-Flop

Stores a value on the positive edge of C Input changes at other times have no effect on output

Positive and Negative Edge D Flip-Flop

D flops can be triggered on positive or negative edge Bubble before Clock (C) input indicates negative edge trigger

Lo-Hi edge

Hi-Lo edge

Summary

- Flip flops are powerful storage elements
- They can be constructed from gates and latches!
- D flip flop is simplest and most widely used
- Asynchronous inputs allow for clearing and presetting the flip flop output
- Multiple flops allow for data storage
- The basis of computer memory!
- Combine storage and logic to make a computation circuit

THANK YOU

