Sequential Circuit (JK \& T Flip Flop) Characteristic Equations

Overview

- Latches respond to trigger levels on control inputs
- Example: If G = 1, input reflected at output
- Difficult to precisely time when to store data with latches
- Flip flips store data on a rising or falling trigger edge.
- Example: control input transitions from o-> 1, data input appears at output
- Data remains stable in the flip flop until until next rising edge.
- Different types of flip flops serve different functions
- Flip flops can be defined with characteristic functions.

Positive Edge-Triggered J-K Flip-Flop

Created from D flop
J sets
K resets
$\mathrm{J}=\mathrm{K}=1$-> invert output

$$
\begin{array}{ccc|cc}
J & K & \text { CLK } & Q & Q^{\prime} \\
\hline 0 & 0 & \uparrow & Q_{0} & Q_{0}{ }^{\prime} \\
0 & 1 & \uparrow & 0 & 1 \\
1 & 0 & \uparrow & 0 & 0 \\
1 & 1 & \uparrow & &
\end{array}
$$

Clocked J-K Flip Flop

Two data inputs, J and K
J -> set, K -> reset, if $\mathrm{J}=\mathrm{K}=1$ then toggle output

Characteristic Table

Positive Edge-Triggered T Flip-Flop

Created from D flop
T=o -> keep current
K resets
T=1-> invert current

Asynchronous Inputs

- J, K are synchronous inputs
o Effects on the output are synchronized with the CLK input.
- Asynchronous inputs operate independently of the synchronous inputs and clock
o Set the FF to 1/o states at any time.

Asynchronous Inputs

(a)

Point	Operation
a	Synchronous toggle on NGT of $\overline{\text { CLK }}$
b	Asynchronous set on $\overline{\text { PRE }}=0$
c	Synchronous toggle
d	Synchronous toggle
e	Asynchronous clear on CLR $=0$
f	CLR over-rides the NGT of CLK
g	Synchronous toggle

(b)

- Note reset signal (R) for D flip flop
- If $\mathrm{R}=\mathrm{o}$, the output Q is cleared
-This event can occur at any time, regardless of the value of the CLK

Parallel Data Transfer

Flip flops store outputs from combinational logic Multiple flops can store a collection of data

*After occurrence of NGT

Flip Flop State

Behavior of clocked sequential circuit can be determined from inputs, outputs and FF state

Output and State Equations

Next state dependent on previous state.

Output equation

State equations $\longrightarrow \mathrm{Q}_{0}(\mathrm{t}+1)=\mathrm{D}_{0}(\mathrm{t})=\mathrm{x}(\mathrm{t}) \mathrm{Q}_{1}(\mathrm{t})$

$$
\mathrm{Q}_{1}(\mathrm{t}+1)=\mathrm{D}_{1}(\mathrm{t})=\mathrm{x}(\mathrm{t})+\mathrm{Q}_{0}(\mathrm{t})
$$

State Table

- Sequence of outputs, inputs, and flip flop states enumerated in state table
- Present state indicates current value of flip flops
- Next state indicates state after next rising clock edge
- Output is output value on current clock edge

State Table	Present State	Next State		Output	
		$\mathrm{x}=0$	$\mathrm{x}=1$	$\mathrm{x}=0$	$x=1$
	00	00	10	0	0
	01	10	10	0	0
	10	00	11	0	0
	11	$10{ }^{\circ}$		0	1
	t)	+1) Q			

State Table

- All possible input combinations enumerated
- All possible state combinations enumerated
- Separate columns for each output value.
- Sometimes easier to designate a symbol for each state.

		Next State		Output	
Let:	State	$\mathrm{x}=0$	$\mathrm{x}=1$	$\mathrm{x}=0$	$\mathrm{x}=1$
$\mathrm{~s}_{0}=00$	$\mathrm{~S}_{0}$	$\mathrm{~s}_{0}$	$\mathrm{~s}_{2}$	0	0
$\mathrm{~s}_{1}=01$	$\mathrm{~s}_{1}$	$\mathrm{~s}_{2}$	$\mathrm{~s}_{2}$	0	0
$\mathrm{~s}_{2}=10$	$\mathrm{~s}_{2}$	$\mathrm{~s}_{0}$	$\mathrm{~s}_{3}$	0	0
$\mathrm{~s}_{3}=11$	$\mathrm{~s}_{3}$	$\mathrm{~s}_{2}$	$\mathrm{~s}_{3}$	0	1

State Diagram

- Circles indicate current state
- Arrows point to next state
- For $x / y, x$ is input and y is output

State Diagram

Each state has two arrows leaving One for $\mathrm{x}=\mathrm{o}$ and one for $\mathrm{x}=1$ Unlimited arrows can enter a state Note use of state names in this example Easier to identify

Flip Flop Input Equations

Boolean expressions which indicate the input to the flip flops.

$$
\begin{aligned}
& \mathrm{D}_{\mathrm{Q} 0}=\mathrm{QQ}_{1} \\
& \mathrm{D}_{\mathrm{Q} 1}=\mathrm{x}+\mathrm{Q}_{0}
\end{aligned}
$$

Format implies type of flop used

Analysis with D Flip-Flops

Identify flip flop input equations Identify output equation

(a) Circuit diagram

Summary

- Flip flops contain state information
- State can be represented in several forms:
- State equations
- State table
- State diagram
- Possible to convert between these forms

Cont..

- Circuits with state can take on a finite set of values
- Finite state machine
- Two types of "machines"
- Mealy machine
- Moore machine

THANK YOU

Summary

- Flip flops are powerful storage elements
- They can be constructed from gates and latches!
- D flip flop is simplest and most widely used
- Asynchronous inputs allow for clearing and presetting the flip flop output
- Multiple flops allow for data storage
- The basis of computer memory!
- Combine storage and logic to make a computation circuit

