Sequential Circuit (Counter Design)

Overview

Counters

- Introduction: Counters
- Asynchronous (Ripple) Counters
- Asynchronous Counters with MOD number < 2^{n}
- Asynchronous Down Counters
- Cascading Asynchronous Counters

Cont...

- Synchronous (Parallel) Counters
- Up/Down Synchronous Counters
- Designing Synchronous Counters
- Decoding A Counter
- Counters with Parallel Load

Cont...

- Synchronous (Parallel) Counters
- Up/Down Synchronous Counters
- Designing Synchronous Counters
- Decoding A Counter
- Counters with Parallel Load
- Bidirectional Shift Registers
- An Application - Serial Addition
- Shift Register Counters
* Ring Counters
* Johnson Counters
- Random-Access Memory (RAM)

Introduction: Counters

- Counters are circuits that cycle through a specified number of states.
- Two types of counters:
* synchronous (parallel) counters
* asynchronous (ripple) counters
- Ripple counters allow some flip-flop outputs to be used as a source of clock for other flip-flops.
- Synchronous counters apply the same clock to all flipflops.

Asynchronous (Ripple) Counters

- Asynchronous counters: the flip-flops do not change states at exactly the same time as they do not have a common clock pulse.
- Also known as ripple counters, as the input clock pulse "ripples" through the counter - cumulative delay is a drawback.
- n flip-flops \rightarrow a MOD (modulus) 2^{n} counter. (Note: A MODx counter cycles through x states.)
- Output of the last flip-flop (MSB) divides the input clock frequency by the MOD number of the counter, hence a counter is also a frequency divider.

Asynchronous (Ripple) Counters

- Example: 2-bit ripple binary counter.
- Output of one flip-flop is connected to the clock input of the next more-significant flip-flop.

Timing Diagram

Asynchronous (Ripple) Counters

- Example: 3-bit ripple binary counter.

Cont...

- Propagation delays in an asynchronous (ripple-clocked) binary counter.
- If the accumulated delay is greater than the clock pulse, some counter states may be misrepresented!

Cont...

-Example: 4-bit ripple binary counter (negative-edge triggered).

Asyn. Counters with MOD no. < $\mathbf{2}^{\text {n }}$

-States may be skipped resulting in a truncated sequence.
-Technique: force counter to recycle before going through all of the states in the binary sequence.
-Example: Given the following circuit, determine the counting sequence (and hence the modulus no.)

All J, K
inputs are
1 (HIGH).

Cont...

-Example (cont'd):

All J, K inputs are 1 (HIGH).

MOD-6 counter produced by clearing (a MOD-8 binary counter) when count of six (110) occurs.

Asyn. Counters with MOD no. < $\mathbf{2}^{\text {n }}$

Example (cont'd): Counting sequence of circuit (in CBA order).

Asyn. Counters with MOD no. $<\mathbf{2}^{\text {n }}$

- Exercise: How to construct an asynchronous MOD-5 counter? MOD-7 counter? MOD-12 counter?
- Question: The following is a MOD-? counter?

Asyn. Counters with MOD no. < $\mathbf{2}^{\mathbf{n}}$

- Decade counters (or BCD counters) are counters with 10 states (modulus-10) in their sequence. They are commonly used in daily life (e.g.: utility meters, odometers, etc.).
- Design an asynchronous decade counter.

Asyn. Counters with MOD no. $<\mathbf{2}^{\text {n }}$

- Asynchronous decade/BCD counter (cont'd).

Asynchronous Down Counters

- So far we are dealing with up counters. Down counters, on the other hand, count downward from a maximum value to zero, and repeat.
- Example: A 3-bit binary (MOD-2 ${ }^{3}$) down counter.

Asynchronous Down Counters

- Example: A 3-bit binary (MOD-8) down counter.

Q_{2}	0	1	1	1	1	0	0	0	0

Cascading Asynchronous Counters

- Larger asynchronous (ripple) counter can be constructed by cascading smaller ripple counters.
- Connect last-stage output of one counter to the clock input of next counter so as to achieve higher-modulus operation.
- Example: A modulus-32 ripple counter constructed from a modulus-4 counter and a modulus- 8 counter.

Cascading Asynchronous Counters

- Example: A 6-bit binary counter (counts from o to 63) constructed from two 3-bit counters.

A_{5}	A_{4}	A_{3}	A_{2}	A_{1}	A_{0}
0	0	0	0	0	0
0	0	0	0	0	1
0	0	0	\vdots	\vdots	\vdots
0	0	0	1	1	1
0	0	1	0	0	0
0	0	1	0	0	1
$:$	$:$	$:$	$:$	$:$	$:$

Cascading Asynchronous Counters

- If counter is a not a binary counter, requires additional output.
- Example: A modulus-100 counter using two decade counters.

$T C=1$ when counter recycles to 0000

