VLSI DESIGN FLOW

VLSI IC DESIGN FLOW

- 1. Design specification
- 2. Behavioral description
- 3. RTL description
- 4. Functional verification and testing
- 5. Logic synthesis
- 6. Gate-level netlist
- 7. Logical verification and testing
- 8. Floor planning, automatic place & route
- 9. Physical layout
- 10. Layout verification
- 11. Implementation

VLSI IC DESIGN FLOW

✓ Design specification

- In any design, specifications are written first.
- Specifications describe abstractly the functionality, interface, and overall architecture of the digital circuit to be designed.
- At this point, the architects do not need to think about how they will implement this circuit.

✓ Behavioral description

- ➤ A behavioral description is then created to analyze the design in terms of functionality, performance, compliance to standards, and other high-level issues.
- > Behavioral descriptions are often written with HDL

VRTE description FLOW

- The behavioral description is manually converted to an RTL description in an HDL.
- The designer has to describe the data flow that will implement the desired digital circuit.

 From this point onward, the design process is done with the assistance of EDÆ
- tools

✓ Functional verification and testing

- Simulation is the process of verifying the functional characteristics of models at any level of abstraction.
- We use simulators to simulate the Hardware models.
- To test if the RTL code meets the functional requirements of the specification, we must see if all the RTL blocks are functionally correct.
- To achieve this we need to write a testbench

• RTL Description

 Functional Verification and Testing

```
module addbit (
         , // first input
          , // Second input
         , // Carry input
         , // sum output
           // carry output
  CO
  );
  //Input declaration
  input a;
  input b;
  input ci;
12 //Ouput declaration
13 output sum;
14 output co;
15 //Port Data types
16 wire
17 wire
         b;
18 wire
         ci;
         sum;
```


counter_out X

VLSI IC DESIGN FLOW Logic Synthesis and Gate level Netlist

- The Logic synthesis tools convert the RTL description to a gatelevel netlist.
- > A gate-level netlist is a description of the circuit in terms of gates and connections between them.
- Logic synthesis tools ensure that the gate-level netlist meets timing, area, and power specifications.

✓ Logical verification and testing

- After the synthesis there are a couple of things that are normally done before passing the netlist to backend (Place and Route)
- *Formal Verification: Check if the RTL to gate mapping is correct.
- *Scan insertion: Insert the scan chain in the case of ASIC.

Synthesis Flow

Figure: Synthesis Flow

VLSI IC DESIGN FLOW

✓ Floor planning, automatic place & route

- The gatelevel netlist from the synthesis tool is taken and imported into place and route tool in Verilog netlist format.
- All the gates and flip-flops are placed; clock tree synthesis and reset is routed.
- >After this each block is routed.
- The P&R tool output is a GDS file, used by foundry for fabricating the ASIC

✓ Physical layout

The gate-level netlist is input to an Automatic Place and Route tool, which creates a layout.

✓ Layout verification and implementation

✓ The layout is verified and then fabricated on a chip

PLACEMENT

FINAL LAYOUT

Figure: J-K Flip-Flop