Sequential Circuit (Counter Design)

Synchronous (Parallel) Counters

- Synchronous (parallel) counters: the flip-flops are clocked at the same time by a common clock pulse.
- We can design these counters using the sequential logic design process (covered in Lecture \#12).
- Example: 2-bit synchronous binary counter (using T flipflops, or JK flip-flops with identical J,K inputs).

$\begin{aligned} & \text { Present } \\ & \text { state } \end{aligned}$		Next state		Flip-flop inputs	
\boldsymbol{A}_{1}	A_{0}	$\mathrm{A}_{1}{ }^{+}$	$\mathrm{A}_{0}{ }^{+}$	TA1	$T A_{0}$
0	0	0	1	0	1
0	1	1	0	1	1
1	0	1	1	0	1
1	1	0	0	1	1

Synchronous (Parallel) Counters

- Example: 2-bit synchronous binary counter (using T flipflops, or JK flip-flops with identical J,K inputs).

Synchronous (Parallel) Counters

- Example: 3-bit synchronous binary counter (using T flipflops, or JK flip-flops with identical J, K inputs).

Synchronous (Parallel) Counters

- Example: 3-bit synchronous binary counter (cont'd).

$$
T A_{2}=A_{1} \cdot A_{0} \quad T A_{1}=A_{0} \quad T A_{0}=1
$$

Synchronous (Parallel) Counters

- Note that in a binary counter, the $\mathrm{n}^{\text {th }}$ bit (shown underlined) is always complemented whenever

$$
\begin{aligned}
\underline{0} 11 \ldots . .11 & \rightarrow \underline{100} \ldots 00 \\
\text { or } \quad \underline{111 . . . ~} 11 & \rightarrow \underline{0} 00 \ldots 00
\end{aligned}
$$

- Hence, X_{n} is complemented whenever $X_{n-1} X_{n-2} \ldots X_{1} X_{o}=11 \ldots 11$.
- As a result, if T flip-flops are used, then

$$
\mathrm{TX}_{\mathrm{n}}=\mathrm{X}_{\mathrm{n}-1} \cdot \mathrm{X}_{\mathrm{n}-2} \cdot \ldots \cdot \mathrm{X}_{1} \cdot \mathrm{X}_{\mathrm{o}}
$$

Synchronous (Parallel) Counters

- Example: 4-bit synchronous binary counter.

$$
\begin{aligned}
& T A_{3}=A_{2} \cdot A_{1} \cdot A_{\mathrm{o}} \\
& T A_{2}=A_{1} \cdot A_{\mathrm{o}} \\
& T A_{1}=A_{\mathrm{o}} \\
& T A_{\mathrm{o}}=1
\end{aligned}
$$

Synchronous (Parallel) Counters

- Example: Synchronous decade/BCD counter.

Clock pulse	Q_{3}	Q_{2}	Q 1	Q 0	
Initially	0	0	0	0	$T_{\mathrm{o}}=1$
1	0	0	0	1	
2	0	0	1	0	$T_{1}=Q_{3} \cdot Q_{0}$
3	0	0	1	1	
4	0	1	0	0	$T_{2}=Q_{1} \cdot Q_{0}$
5	0	1	0	1	$T_{3}=Q_{2} \cdot Q_{1} \cdot Q_{0}+$
6	0	1	1	0	$T_{3}=Q_{2} \cdot Q_{1} \cdot Q_{0}$
7	0	1	1	1	$Q_{3} . Q_{0}$
8	1	0	0	0	$Q_{3} \cdot Q_{0}$
9	1	0	0	1	
10 (recycle)	0	0	0	0	

Synchronous (Parallel) Counters

- Example: Synchronous decade/BCD counter (cont'd).

Up/Down Synchronous Counters

- Up/down synchronous counter: a bidirectional counter that is capable of counting either up or down.
- An input (control) line $U p / \overline{D o w n}$ (or simply $U p$) specifies the direction of counting.
*Up/Down $=1 \rightarrow$ Count upward
$* U p / \overline{D o w n}=\mathrm{o} \rightarrow$ Count downward

Up/Down Synchronous Counters

- Example: A 3-bit up/down synchronous binary counter.
$\begin{array}{llllll}\text { Clockpulse Up } & Q_{2} & Q_{1} & Q_{0} & \text { Down }\end{array}$

0		0	0				
1			0		1		
2	<	0	1		0		
3	<	0	1		1		
4	\%	1	0		0		
5	<	1	0		1		
6	<	1	1		0	3	
7	<	1	1		1		L

Up counter	Down
$T Q_{\mathrm{o}}=1$	counter
$T Q_{1}=Q_{\mathrm{o}}$	$T Q_{\mathrm{o}}=1$
$T Q_{2}=Q_{0} \cdot Q_{1}$	$T Q_{1}=Q_{\mathrm{o}}{ }^{\prime}$
	$T Q_{2}=Q_{\mathrm{o}} \cdot Q_{1}{ }^{\prime}$

Up/Down Synchronous Counters

- Example: A 3-bit up/down synchronous binary counter (cont'd).

$$
\begin{aligned}
& T Q_{\mathrm{o}}=1 \\
& T Q_{1}=\left(Q_{\mathrm{o}} \cdot U p\right)+\left(Q_{\mathrm{o}}^{\prime} \cdot U p^{\prime}\right) \\
& T Q_{2}=\left(Q_{0} \cdot Q_{1} \cdot U p\right)+\left(Q_{\mathrm{o}}^{\prime} \cdot Q_{1}^{\prime} \cdot U p^{\prime}\right)
\end{aligned}
$$

Designing Synchronous Counters

- Covered in Lecture \#12.
- Example: A 3-bit Gray code counter (using JK flip-flops).

$\begin{gathered} \text { Present } \\ \text { state } \end{gathered}$			$\begin{aligned} & \hline \text { Next } \\ & \text { state } \\ & \hline \end{aligned}$			$\begin{aligned} & \text { Flip-flop } \\ & \text { inputs } \\ & \hline \end{aligned}$					
Q_{2}	Q_{1}	Q_{0}	$Q_{2}{ }^{+}$	$Q_{1}{ }^{+}$	$Q_{0}{ }^{+}$	$J Q_{2}$	$K Q_{2}$	$J Q_{1}$	$K Q_{1}$	$J Q_{0}$	$K Q_{0}$
0	0	0	0	0	1	0	X	0	X	1	X
0	0	1	0	1	1	0	X	1	X	X	0
0	1	0	1	1	0	1	X	X	0	0	X
0	1	1	0	1	0	0	X	X	0	X	1
1	0	0	0	0	0	X	1	0	X	0	X
1	0	1	1	0	0	X	0	0	X	X	1
1	1	0	1	1	1	X	0	X	0	1	X
1	1	1	1	0	1	X	0	X	1	X	0

Cont...

- 3-bit Gray code counter: flip-flop inputs.

Cont...

- 3-bit Gray code counter: logic diagram.

$$
\begin{aligned}
& J Q_{2}=Q_{1} \cdot Q_{\mathrm{o}}^{\prime} \quad J Q_{1}=Q_{2}^{\prime} \cdot Q_{\mathrm{o}} \quad J Q_{\mathrm{o}}=\left(Q_{2} \oplus Q_{1}\right)^{\prime} \\
& K Q_{2}=Q_{1}^{\prime} \cdot Q_{\mathrm{o}}^{\prime} K Q_{1}=Q_{2} \cdot Q_{\mathrm{o}} \quad K Q_{\mathrm{o}}=Q_{2} \oplus Q_{1}
\end{aligned}
$$

Decoding A Counter

- Decoding a counter involves determining which state in the sequence the counter is in.
- Differentiate between active-HIGH and active-LOW decoding.
- Active-HIGH decoding: output HIGH if the counter is in the state concerned.
- Active-LOW decoding: output LOW if the counter is in the state concerned.

Cont...

- Example: MOD-8 ripple counter (active-HIGH decoding).

HIGH only on count of $A B C=\mathbf{0 0 0}$

HIGH only on count of $A B C=001$

HIGH only on count of $A B C=010$

HIGH only on count of $A B C=111$

Cont...

- Example: To detect that a MOD-8 counter is in state 0 (ooo) or state 1 (oo1).

HIGH only on count of $A B C=000$ or $A B C=001$

- Example: To detect that a MOD-8 counter is in the odd states (states $1,3,5$ or 7), simply use C.

HIGH only on count of odd states

Counters with Parallel Load

- Counters could be augmented with parallel load capability for the following purposes:
* To start at a different state
* To count a different sequence
* As more sophisticated register with increment/decrement functionality.

Counters with Parallel Load

- Different ways of getting a MOD-6 counter:

(a) Binary states 0,1,2,3,4,5.

(c) Binary states 10,11,12,13,14,15.

Inputs have no effect
(b) Binary states $0,1,2,3,4,5$.

(d) Binary states 3,4,5,6,7,8.

Counters with Parallel Load

- 4-bit counter with parallel load.

Clear	CP	Load	Count	Function
0	X	X	X	Clear to 0
1	X	0	0	No change
1	\uparrow	1	X	Load inputs
1	\uparrow	0	1	Next state

