Sequential Circuit (Register \& Counter)

Parallel In/Serial Out Shift Registers

- Bits are entered simultaneously, but output is serial.

Parallel In/Serial Out Shift Registers

- Bits are entered simultaneously, but output is serial.

Logic symbol

Parallel In/Parallel Out Shift Registers

- Simultaneous input and output of all data bits.

Bidirectional Shift Registers

- Data can be shifted either left or right, using a control line $R I G H T / \overline{L E F T}$ (or simply RIGHT) to indicate the direction.

Bidirectional Shift Registers

- 4-bit bidirectional shift register with parallel load.

Bidirectional Shift Registers

- 4-bit bidirectional shift register with parallel load.

Mode Control		
s_{1}	s_{0}	Register Operation
0	0	No change
0	1	Shift right
1	0	Shift left
1	1	Parallel load

An Application - Serial Addition

- Most operations in digital computers are done in parallel. Serial operations are slower but require less equipment.
- A serial adder is shown below. $A \leftarrow A+B$.

An Application - Serial Addition

- $A=0100 ; B=0111 . A+B=1011$ is stored in A after 4 clock pulses.

Initial:	$\begin{aligned} & A: 010 \underline{0} \\ & B: 0111 \end{aligned}$	$Q: \underline{0}$
Step 1: $0+1+0$	A: $101 \underline{0}$	$Q: 0$
Step 2 $\begin{aligned} & S=1, c=0 \\ & 0+1+0 \\ & s=1, c=0 \end{aligned}$	$\begin{aligned} & B: \times 011 \\ & A: 1101 \\ & B \cdot x \times 01 \end{aligned}$	$Q: \underline{0}$
Step 3: $1+1+0$ $S=0, C=1$	$\begin{aligned} & A: 011 \underline{0} \\ & B: x x \times 0 \end{aligned}$	$Q: \underline{1}$
$\begin{aligned} \text { Step 4: } & 0+0+1 \\ & S=1, C=0 \end{aligned}$	$\begin{aligned} & A: 1011 \\ & B: x x x x \end{aligned}$	$Q: \underline{0}$

Shift Register Counters

- Shift register counter: a shift register with the serial output connected back to the serial input.
- They are classified as counters because they give a specified sequence of states.
- Two common types: the Johnson counter and the Ring counter.

Ring Counters

- One flip-flop (stage) for each state in the sequence.
- The output of the last stage is connected to the D input of the first stage.
- An n-bit ring counter cycles through n states.
- No decoding gates are required, as there is an output that corresponds to every state the counter is in.

Ring Counters

- Example: A 6-bit (MOD-6) ring counter.

Clock	Q_{0}	Q_{1}	Q_{2}	Q_{3}	Q_{4}	Q_{5}
$\longrightarrow 0$	1	0	0	0	0	0
1	0	1	0	0	0	0
2	0	0	1	0	0	0
3	0	0	0	1	0	0
4	0	0	0	0	1	0
5	0	0	0	0	0	1

Johnson Counters

- The complement of the output of the last stage is connected back to the D input of the first stage.
- Also called the twisted-ring counter.
- Require fewer flip-flops than ring counters but more flipflops than binary counters.
- An n-bit Johnson counter cycles through $2 n$ states.
- Require more decoding circuitry than ring counter but less than binary counters.

Cont...

- Example: A 4-bit (MOD-8) Johnson counter.

C Io c k	Q_{0}	Q_{1}	Q_{2}	Q_{3}
$\longrightarrow 0$	0	0	0	0
1	1	0	0	0
2	1	1	0	0
3	1	1	1	0
4	1	1	1	1
5	0	1	1	1
6	0	0	1	1
7	0	0	0	1

Cont...

- Decoding logic for a 4-bit Johnson counter.

Clock	A	B	C	D	Decoding
$\longrightarrow 0$	0	0	0	0	$A^{\prime} \cdot D^{\prime}$
1	1	0	0	0	$A . B^{\prime}$
2	1	1	0	0	$B . C^{\prime}$
3	1	1	1	0	$C . D^{\prime}$
4	1	1	1	1	$A . D^{\prime}$
5	0	1	1	1	$A^{\prime} . B$
6	0	0	1	1	$B^{\prime} . C$
7	0	0	0	1	$C^{\prime} . D$

THANK YOU

