## Sequential Circuit (Shift Register Counters)

## Shift Register Counters

- Shift register counter: a shift register with the serial output connected back to the serial input.
- They are classified as counters because they give a specified sequence of states.
- Two common types: the Johnson counter and the Ring counter.


## Ring Counters

- One flip-flop (stage) for each state in the sequence.
- The output of the last stage is connected to the D input of the first stage.
- An $n$-bit ring counter cycles through $n$ states.
- No decoding gates are required, as there is an output that corresponds to every state the counter is in.


## Ring Counters

- Example: A 6-bit (MOD-6) ring counter.


| Clock | $Q_{0}$ | $Q_{1}$ | $Q_{2}$ | $Q_{3}$ | $Q_{4}$ | $Q_{5}$ |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| $\longrightarrow 0$ | 1 | 0 | 0 | 0 | 0 | 0 |
| 1 | 0 | 1 | 0 | 0 | 0 | 0 |
| 2 | 0 | 0 | 1 | 0 | 0 | 0 |
| 3 | 0 | 0 | 0 | 1 | 0 | 0 |
| 4 | 0 | 0 | 0 | 0 | 1 | 0 |
| 5 | 0 | 0 | 0 | 0 | 0 | 1 |



## Johnson Counters

- The complement of the output of the last stage is connected back to the D input of the first stage.
- Also called the twisted-ring counter.
- Require fewer flip-flops than ring counters but more flipflops than binary counters.
- An $n$-bit Johnson counter cycles through $2 n$ states.
- Require more decoding circuitry than ring counter but less than binary counters.


## Cont...

- Example: A 4-bit (MOD-8) Johnson counter.


| C Io c k | $Q_{0}$ | $Q_{1}$ | $Q_{2}$ | $Q_{3}$ |
| :--- | :---: | :---: | :---: | :---: |
| $\longrightarrow 0$ | 0 | 0 | 0 | 0 |
| 1 | 1 | 0 | 0 | 0 |
| 2 | 1 | 1 | 0 | 0 |
| 3 | 1 | 1 | 1 | 0 |
| 4 | 1 | 1 | 1 | 1 |
| 5 | 0 | 1 | 1 | 1 |
| 6 | 0 | 0 | 1 | 1 |
| 7 | 0 | 0 | 0 | 1 |



## Cont...

- Decoding logic for a 4-bit Johnson counter.

| Clock | $A$ | $B$ | $C$ | $D$ | Decoding |
| :--- | :---: | :---: | :---: | :---: | :---: |
| $\longrightarrow 0$ | 0 | 0 | 0 | 0 | $A^{\prime} \cdot D^{\prime}$ |
| 1 | 1 | 0 | 0 | 0 | $A . B^{\prime}$ |
| 2 | 1 | 1 | 0 | 0 | $B . C^{\prime}$ |
| 3 | 1 | 1 | 1 | 0 | $C . D^{\prime}$ |
| 4 | 1 | 1 | 1 | 1 | $A . D^{\prime}$ |
| 5 | 0 | 1 | 1 | 1 | $A^{\prime} . B$ |
| 6 | 0 | 0 | 1 | 1 | $B^{\prime} . C$ |
| 7 | 0 | 0 | 0 | 1 | $C^{\prime} . D$ |



