DESIGN METHODOLOGIES

DESIGN METHODOLOGIES

There are two basic types of digital design methodologies: a topdown design methodology and a bottom-up design methodology

In a top-down design methodology, we define the top-level block and identify the sub-blocks necessary to build the top-level block. We further subdivide the sub-blocks until we come to leaf cells, which are the cells that cannot further be divided.

In a bottom-up design methodology, we first identify the building blocks that are available to us. We build bigger cells, using these building blocks. These cells are then used for higher-level blocks until we build the top-level block in the design

Verilog HDL

Design Methodologies

4-BIT RIPPLE CARRY COUNTER

T-FLIPFLOP AND THE HIERARCHY

Electronic Design & Automation (EDA) 1

IMPORTANCE OF HDLS

- Retargeting to a new fabrication technology
- Functional verification earlier in the design cycle
- Textual concise representation of the design
 - Similar to computer programs
 - Easier to understand

POPULARITY OF VERILOG HDL

Verilog HDL

- General-purpose
- Easy to learn, easy to use
- Similar in syntax to C
- Allows different levels of abstraction and mixing them
- Supported by most popular logic synthesis tools
- Post-logic-synthesis simulation libraries by all fabrication vendors
- PLI to customize Verilog simulators to designers' needs