
9

Finite State Machines
•  Digital Systems and especially their Controllers

can be described as Finite State Machines
(FSMs)

•  Finite State Machines can be represented using

•  State Diagrams and State Tables - suitable
for simple digital systems with a relatively few
inputs and outputs

•  Algorithmic State Machine (ASM) Charts -
suitable for complex digital systems with a
large number of inputs and outputs

•  All these descriptions can be easily translated to
the corresponding synthesizable VHDL code

Hardware Design with RTL VHDL

Pseudocode

Datapath Controller

Block

diagram

Block

diagram

State diagram

or ASM chart

VHDL code VHDL code VHDL code

Interface

Steps of the Design Process

1.  Text description
2.  Interface
3.  Pseudocode
4.  Block diagram of the Datapath
5.  Interface with the division into the Datapath
 and the Controller
6.  ASM chart of the Controller
7.  RTL VHDL code of the Datapath, the Controller, and the

Top Unit
8.  Testbench of the Datapath, the Controller, and the Top

Unit
9.  Functional simulation and debugging
10.  Synthesis and post-synthesis simulation
11.  Implementation and timing simulation
12.  Experimental testing

1.  Text description
2.  Interface
3.  Pseudocode
4.  Block diagram of the Datapath
5.  Interface with the division into the Datapath
 and the Controller
6.  ASM chart of the Controller
7.  RTL VHDL code of the Datapath, the Controller, and

the Top Unit
8.  Testbench of the Datapath, the Controller, and the

Top Unit
9.  Functional simulation and debugging
10.  Synthesis and post-synthesis simulation
11.  Implementation and timing simulation
12.  Experimental testing

Steps of the Design Process
Practiced in Class Today

13 ECE 448 – FPGA and ASIC Design with VHDL

Finite State Machines

Refresher

14

Finite State Machines (FSMs)

•  Any Circuit with Memory Is a Finite State
Machine

•  Even computers can be viewed as huge FSMs

•  Design of FSMs Involves

•  Defining states

•  Defining transitions between states

•  Optimization / minimization

•  Manual Optimization/Minimization Is
Practical for Small FSMs Only

15

Moore FSM

•  Output Is a Function of a Present State Only

Present State
register

Next State
function

Output
function

Inputs

Present State Next State

Outputs

clock
reset

16

Mealy FSM

•  Output Is a Function of a Present State and
Inputs

Next State
function

Output
function

Inputs

Present State Next State

Outputs

Present State
register

clock
reset

17 ECE 448 – FPGA and ASIC Design with VHDL

State Diagrams

18

Moore Machine

state 1 /
output 1

state 2 /
output 2

transition
condition 1

transition
condition 2

19

Mealy Machine

state 1 state 2

transition condition 1 /
output 1

transition condition 2 /
output 2

20

Moore vs. Mealy FSM (1)

•  Moore and Mealy FSMs Can Be
Functionally Equivalent

•  Equivalent Mealy FSM can be derived from
Moore FSM and vice versa

•  Mealy FSM Has Richer Description and
Usually Requires Smaller Number of States

•  Smaller circuit area

21

Moore vs. Mealy FSM (2)

•  Mealy FSM Computes Outputs as soon as
Inputs Change

•  Mealy FSM responds one clock cycle sooner
than equivalent Moore FSM

•  Moore FSM Has No Combinational Path
Between Inputs and Outputs

•  Moore FSM is less likely to affect the critical
path of the entire circuit

22

Moore FSM - Example 1

•  Moore FSM that Recognizes Sequence “10”

S0 / 0 S1 / 0 S2 / 1

0
0

0

1

1
1

reset

Meaning
of states:

S0: No
elements
of the
sequence
observed

S1: “1”
observed

S2: “10”
observed

23

Mealy FSM - Example 1

•  Mealy FSM that Recognizes Sequence “10”

S0 S1

0 / 0 1 / 0 1 / 0

0 / 1 reset

Meaning
of states:

S0: No
elements
of the
sequence
observed

S1: “1”
observed

24

Moore & Mealy FSMs – Example 1

clock

input

Moore

Mealy

0 1 0 0 0

S0 S1 S2 S0 S0

S0 S1 S0 S0 S0

25 ECE 448 – FPGA and ASIC Design with VHDL

Finite State Machines

in VHDL

26

FSMs in VHDL

•  Finite State Machines Can Be Easily
Described With Processes

•  Synthesis Tools Understand FSM
Description if Certain Rules Are Followed

•  State transitions should be described in a
process sensitive to clock and asynchronous
reset signals only

•  Output function described using rules for
combinational logic, i.e. as concurrent
statements or a process with all inputs in the
sensitivity list

27

Moore FSM

Present State
Register

Next State
function

Output
function

Inputs

Present State

Next State

Outputs

clock
reset

process(clock, reset)

concurrent
statements

28

Mealy FSM

Next State
function

Output
function

Inputs

Present State Next State

Outputs

Present State
Register

clock
reset

process(clock, reset)

concurrent
statements

29

Moore FSM - Example 1

•  Moore FSM that Recognizes Sequence “10”

S0 / 0 S1 / 0 S2 / 1

0
0

0

1

1
1

reset

30

Moore FSM in VHDL (1)

TYPE state IS (S0, S1, S2);

SIGNAL Moore_state: state;

U_Moore: PROCESS (clock, reset)

BEGIN

 IF(reset = ‘1’) THEN

 Moore_state <= S0;

 ELSIF (clock = ‘1’ AND clock’event) THEN

 CASE Moore_state IS

 WHEN S0 =>

 IF input = ‘1’ THEN

 Moore_state <= S1;

 ELSE

 Moore_state <= S0;

 END IF;

31

Moore FSM in VHDL (2)

 WHEN S1 =>
 IF input = ‘0’ THEN

 Moore_state <= S2;
 ELSE
 Moore_state <= S1;
 END IF;

 WHEN S2 =>
 IF input = ‘0’ THEN

 Moore_state <= S0;
 ELSE

 Moore_state <= S1;
 END IF;

 END CASE;
 END IF;

END PROCESS;

Output <= ‘1’ WHEN Moore_state = S2 ELSE ‘0’;

32

Mealy FSM - Example 1

•  Mealy FSM that Recognizes Sequence “10”

S0 S1

0 / 0 1 / 0 1 / 0

0 / 1 reset

33

Mealy FSM in VHDL (1)

TYPE state IS (S0, S1);

SIGNAL Mealy_state: state;

U_Mealy: PROCESS(clock, reset)

BEGIN

 IF(reset = ‘1’) THEN

 Mealy_state <= S0;

 ELSIF (clock = ‘1’ AND clock’event) THEN

 CASE Mealy_state IS

 WHEN S0 =>

 IF input = ‘1’ THEN

 Mealy_state <= S1;

 ELSE

 Mealy_state <= S0;

 END IF;

34

Mealy FSM in VHDL (2)

 WHEN S1 =>

 IF input = ‘0’ THEN

 Mealy_state <= S0;

 ELSE

 Mealy_state <= S1;

 END IF;

 END CASE;

 END IF;

END PROCESS;

Output <= ‘1’ WHEN (Mealy_state = S1 AND input = ‘0’) ELSE ‘0’;

