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Ecole Polytechnique Fédérale de Lausanne (EPFL)

EPFL is one of the premier
Science and Engineering
Universities in Europe

6,000 Students

Over 100 Nationalities
with 50% of the teachers
coming form outside of
Switzerland.

Michael Gratzel is the
most highly cited solar
scientist in the world.

Gratzel lab is a five minute walk from Lac Léman
and beach volleyball courts.
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Dye-Sensitized Solar Cells are Photovoltaic Devices

Power from Solar Cell: PPV — ]mp X Vmp

Lpy
P

Sun
IS one kilowatt per meter

Power Conversion Efficiency: ,7PV —

On a sunny day, the power from the sun (P
squared (1 kW/m?).

sun)



A new in paradigm in solar energy conversion

The Dye Sensitized solar cell:
Low to medium purity materials
Low cost processing
High Efficiency
High Stability




Dye-Sensitized Solar Cell Components

Sensitizing Dye Titania Nanoparticles Electrolyte
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Dye-Sensitized Solar Cell Schematic




Current Generation in DSCs
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Current Generation in DSCs
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Current Generation in DSCs
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Current Generation in DSCs
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Current Generation in DSCs
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Electron energy
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The voltage is
determined
mainly by the
titania and
redox couple
In the
electrolyte.



Why Dye-Sensitized Solar Cells are nicknamed
the “Gratzel Cell”
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Dye-Sensitized Solar Cells are 12%
Efficient. What can we do to make
them better?

 Develop dyes to absorb more photons
* Create new electrolytes that provide higher voltages.

 Develop Dye-Sensitized Solar Cells that can last for 30
years



Where do we need to absorb the light?

Solar Spectrum

Visible light Infrared Light
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Dye-sensitized solar cells absorb >85% of visible light, but
almost no light in the near-infrared.



Leaf-shaped transparent DSC

N Pl T T T T —p————— by L™ .
Various colors in a series-connected dye with four colors courtesy AISIN
solar cell module courtesy Dr. Andreas SEIKI CO.,LTD.

Hinsch, FHI, ISE Freiburg Germany.



Design dyes that broadly absorb light
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Design Near-Infrared Absorbing Dyes

* Can increase power
conversion efficiency
from 12% to 14% by
absorbing light out to
900 nm.

* Probably can’t make
DSCs >14% using liquid
electrolytes.

Stanford/EPFL collaboration through the Center for Advanced Molecular Photovoltaics (CAMP)



Increase the maximum voltage using plastic hole
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Potential to make
>20% efficient
devices by replacing
liquid electrolyte
with plastic “solid-
state” hole
conductors.

Current “solid-state”
DSCs are only 6.5%
efficient.

Very promising
research area.

Bach & Gratzel, Nature 1999



Aesthetic Advantages of Gratzel Cells versus
conventional Solar Devices

Dyes determine the color
of the device.

Can be transparent
Can be flexible

Easy to make







Solar Powered Solar Panel Sun Glasses
The SIG, or “Self-Energy Converting Sunglasses” are quite simple. The lenses of the glasses have
dye solar cells, collecting energy and making it able to power your small devices through the power jack
at the back of the frame. “Infinite Energy: SIG”




= . —y
'—.'-'-r-'i.l"' .rr...ql-_.. __.l_"'l-.,“-. :...,_I-.II--I..-.-_ :.__ 1._"..:"!-.,'-'..:'-..;-."'"--" -I'_"-'1, .F‘l.‘...._.:

a o - e
- Nlo_gule _Un;t & P “. Ces% ' _-Outdoor Test™. == . - *. =t
1 = - = 3 ™
& . -.-‘._ e -..'-.I_I.l—.. ....I.--ll-_-.'lh.\. ' i e ..-..l.i-"_t * th'l' I .r-.l
] . . . _ S e i F.""-"r o
- :'il - -
Ir : .-h_..l.‘. ¥ - i- . y
o T = n "
. B ¥
i | . 1.——':-.
o
¥ (AL I .
- . -
i N o
, %
=
-I -
= .
.
5! 1
] & =

- : R - s
'S rie_gponngctgd‘- Karlyg__plty a-t,lat —35°iﬂ _;pl, e

4-DSG~ce!Is '",‘_*_-_r:} . 1A-5-|mu_t.h-a.| a-nglvé-"o e Wy, W, — =
S e L =0 - ¥ Facing.due'south, Ii]ied at'30° "

-, - = - =
P A 7 I:_ I"_"l-—l'l ..I..I.T..--Il_-l..-'l_.l-.._I "'l-lr{-‘ -.-_..l_-" |. .._r-.. h-"-n..*'






High School Students make their own solar cell
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The DSC vs. Conventional Silicon PV

R T
S TIO, n-type
€ Silicon
Dye
p-type
Electrolyte Silicon
Cathode

harge carriers (excited electrons)
are produced throughout the
semiconductor

ight absorption and charge
transport are decoupled

elaxed constraints on individual
components (each can be
separately tuned)

emiconductor considerations:
* Precise doping
* high purity
* high crystalinity



Solar Cell Efficiencies

Silicon Solar Cell Efficiencies:
Theoretical Maximum: 26%

Best in Lab: 25% (Green, UNSW)
Modules: 15-22%

Thin Film Solar Cell Efficiencies:
Theoretical Maximum: >22%

Best in Lab: 20% (Noufi, NREL)
Modules: 9-12%

Dye-Sensitized Solar Cell Efficiencies:
Theoretical Maximum: 14-20%

Best in Lab: 12% (Gratzel, EPFL)
Modules: 6-9%
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