Project Time Management

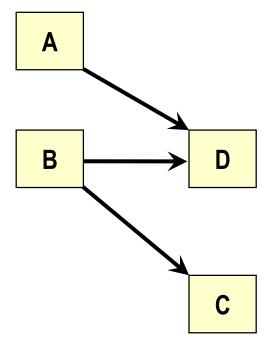
Learning Objectives

- Understand the importance of project schedules and good project time management.
- Define activities as the basis for developing project schedules.
- Describe how project managers use network diagrams and dependencies to assist in activity sequencing.
- Understand the relationship between estimating resources and project schedules.
- Explain how various tools and techniques help project managers perform activity duration estimating.

Learning Objectives

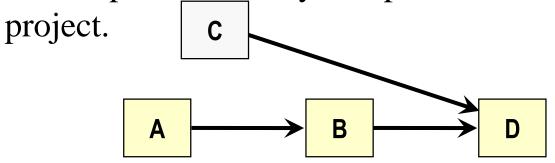
- Use a Gantt chart for planning and tracking schedule information, find the critical path for a project, and describe how critical chain scheduling and the Program Evaluation and Review Technique (PERT) affect schedule development.
- Discuss how reality checks and people issues are involved in controlling and managing changes to the project schedule.
- Describe how project management software can assist in project time management and review words of caution before using this software.

Developing the Project Plan


- The Project Network
 - A flow chart that graphically depicts the sequence, interdependencies, and start and finish times of the project job plan of activities that is the *critical path* through the network.
 - Provides the basis for scheduling labor and equipment.
 - Enhances communication among project participants.
 - Provides an estimate of the project's duration.
 - Provides a basis for budgeting cash flow.
 - Identifies activities that are critical.
 - Highlights activities that are "critical" and can not be delayed.
 - Help managers get and stay on plan.

Project Time Management Processes

- Activity definition: Identifying the specific activities that the project team members and stakeholders must perform to produce the project deliverables.
- Activity sequencing: Identifying and documenting the relationships between project activities.
- Activity resource estimating: Estimating how many resources a project team should use to perform project activities.
- Activity duration estimating: Estimating the number of work periods that are needed to complete individual activities.
- Schedule development: Analyzing activity sequences, activity resource estimates, and activity duration estimates to create the project schedule.
- Schedule control: Controlling and managing changes to the project schedule.


Constructing a Project Network

- Terminology
 - Activity: an element of the project that requires time.
 - Merge Activity: an activity that has two or more preceding activities on which it depends.
 - Parallel (Concurrent)
 Activities: Activities that can occur independently and, if desired, not at the same time.

Constructing a Project Network Terminology (cont'd)

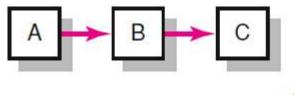
- Path: a sequence of connected, dependent activities.
- **Critical path:** the longest path through the activity network that allows for the completion of all project-related activities; the shortest expected time in which the entire project can be completed. Delays on the critical path will delay completion of the entire

(Assumes that minimum of A + B > minimum of C in length of times to complete activities.)

Constructing a Project Network Terminology (cont'd)

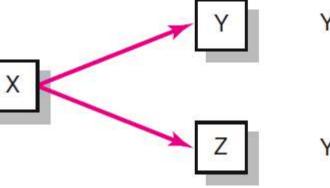
- Event: a point in time when an activity is started or completed. It does not consume time.
- Burst Activity: an activity that has more than one activity immediately following it (more than one dependency arrow flowing from it).

Α


D

- Two Approaches
 - Activity-on-Node (AON)
 - Uses a node to depict an activity.
 - Activity-on-Arrow (AOA)
 - Uses an arrow to depict an activity.

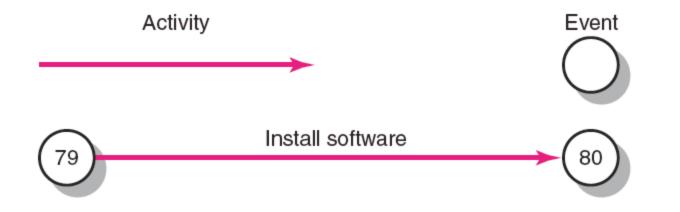
Basic Rules to Follow in Developing Project Networks


- 1. Networks typically flow from left to right.
- 2. An activity cannot begin until all preceding connected activities are complete.
- 3. Arrows indicate precedence and flow and can cross over each other.
- 4. Each activity must have a unique identify number that is greater than any of its predecessor activities.
- 5. Looping is not allowed.
- 6. Conditional statements are not allowed.
- 7. Use common start and stop nodes.

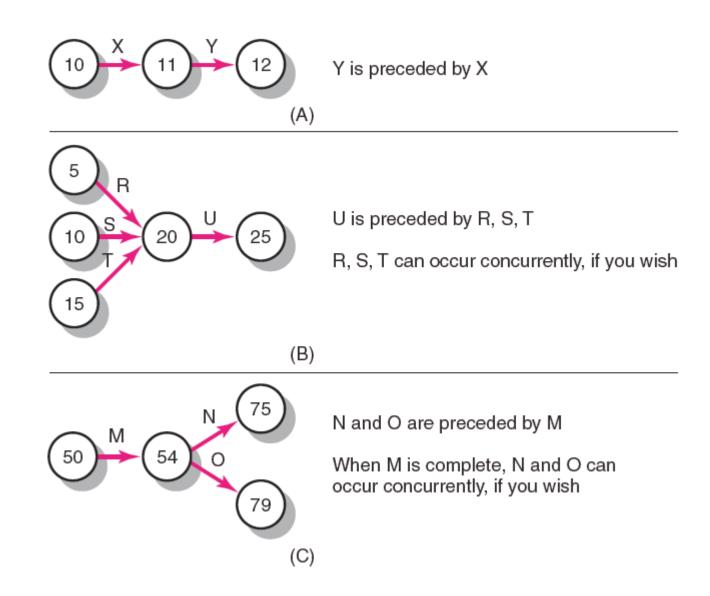
Activity-on-Node Fundamentals

A is preceded by nothing B is preceded by A C is preceded by B

(A)



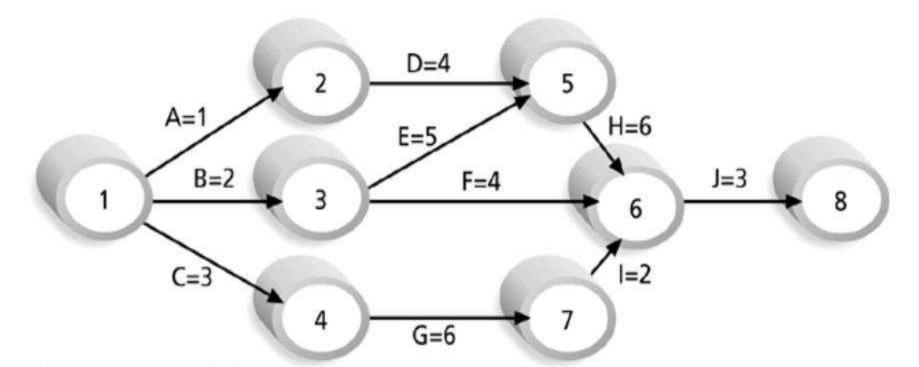
Y and Z are preceded by X


Y and Z can begin at the same time, if you wish

(B) X is a burst activity

Activity-on-Arrow Network Building Blocks

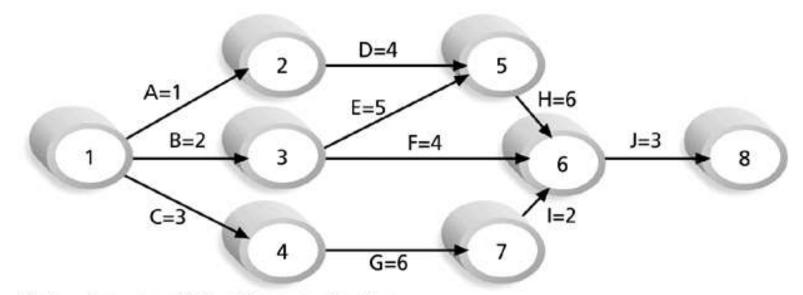
Activity-on-Arrow Network Fundamentals


Network Diagrams

- Network diagrams are the preferred technique for showing activity sequencing.
- A **network diagram** is a schematic display of the logical relationships among, or sequencing of, project activities.
- Two main formats are the arrow and precedence diagramming methods.

Activity	Preceding	Duration	
	Activity		
Α	-	1	
В	-	2	
С	-	3	
D	A	4	
E	В	5	
F	В	4	
G	С	6	
Н	D, E	6	
Ι	G	2	
J	F, H, I	3	

Sample Activity-on-Arrow (AOA) Network Diagram for Project X



Note: Assume all durations are in days; A=1 means Activity A has a duration of 1 day.

Critical Path Method (CPM)

- **CPM** is a network diagramming technique used to predict total project duration.
- A **critical path** for a project is the series of activities that determines the *earliest time* by which the project can be completed.
- The critical path is the *longest path* through the network diagram and has the least amount of slack or float.
- Slack or float is the amount of time an activity can be delayed without delaying a succeeding activity or the project finish date.

Determining the Critical Path for Project X

Note: Assume all durations are in days.

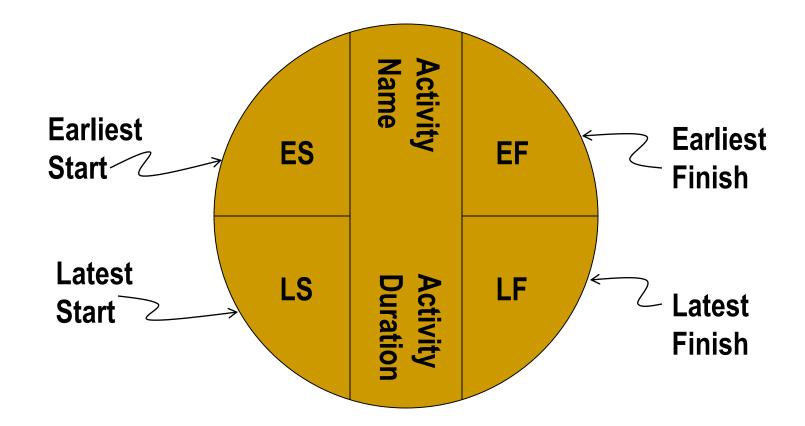
Path 1:	A-D-H-J	Length = 1+4+6+3 = 14 days
Path 2:	B-E-H-J	Length = 2+5+6+3 = 16 days
Path 3:	B-F-J	Length = 2+4+3 = 9 days
Path 4:	C-G-I-J	Length = 3+6+2+3 = 14 days

Since the critical path is the longest path through the network diagram, Path 2, B-E-H-J, is the critical path for Project X.

Using Critical Path Analysis to Make Schedule Trade-offs

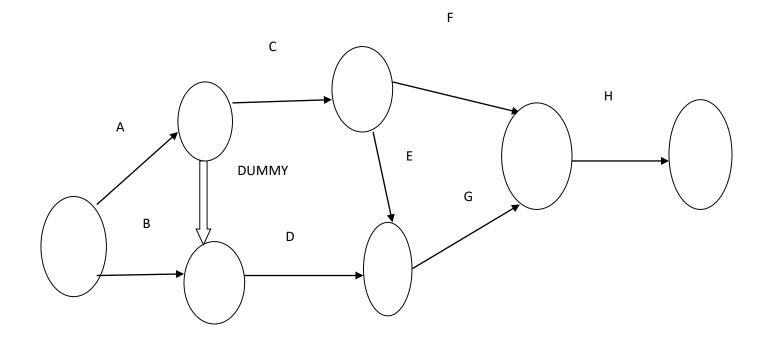
- A **forward pass** through the network diagram determines the earliest start and finish dates.
- A **backward pass** determines the latest start and finish dates.
- **Float or Slack** is the amount of time that an activity can delay without delaying the project

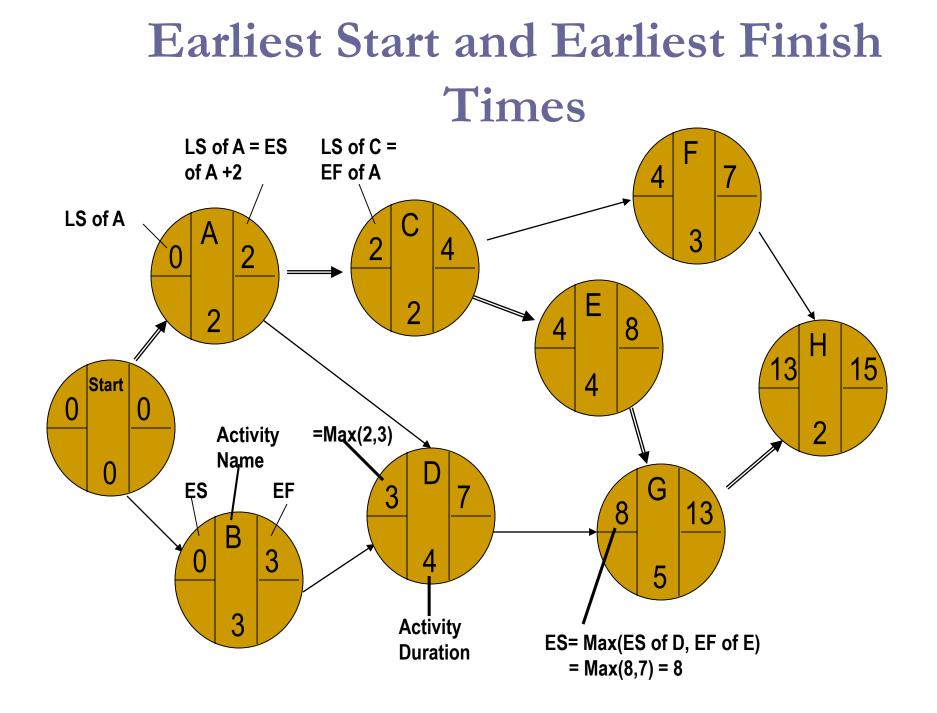
Slack for Task
$$i = LS_i - ES_i$$
 or $LF_i - EF_i$

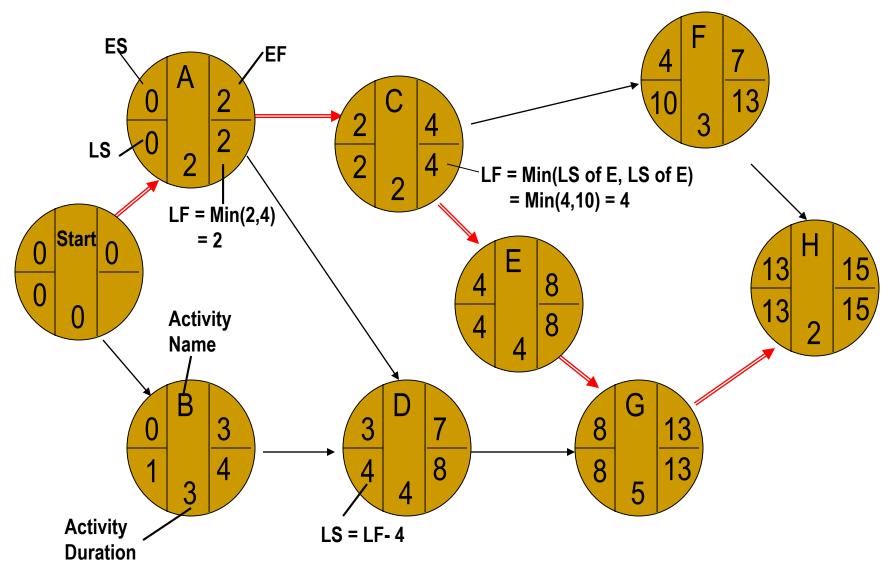

Earliest Start and Finish Steps

- Begin at starting event and work forward
- ES = 0 for starting activities
 - ES is earliest start
- EF = ES + Activity time
 - EF is earliest finish
- ES = Maximum {EF of all immediate predecessors}

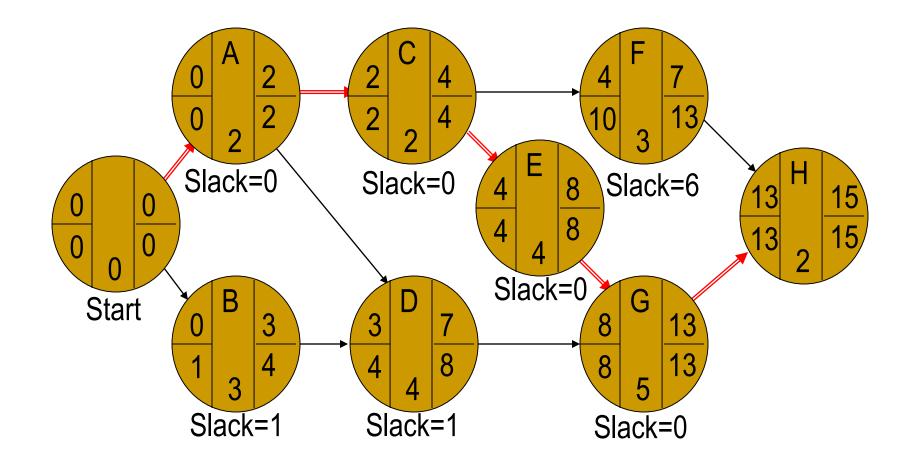
Latest Start and Finish Steps


- Begin at ending event and work backward
- LF = Maximum EF for ending activities
 - LF is latest finish; EF is earliest finish
- LS = LF Activity time
 - LS is latest start
- LF = Minimum {LS of all immediate successors}


Latest Start and Finish Steps


Activities and Predecessors

Activity	Immediate Predecessors	Duration (week)
Α	-	2
В	-	3
С	Α	2
D	A, B	4
E	С	4
F	С	3
G	D, E	5
Η	F, G	2



Latest Start and Latest Finish Times

Critical Path and Slack Time

Slack Time

Activity	ES	EF	LS	LF	Slack LS-ES	On Critical Path
А	0	2	0	2	0	Y
В	0	3	1	4	1	N
С	2	4	2	4	0	Y
D	3	7	4	8	1	N
E	4	8	4	8	0	Y
F	4	7	10	13	6	N
G	8	13	8	13	0	Y
Н	13	15	13	15	0	Y

Buffers and Critical Chain

- A **buffer** is additional time to complete a task.
- Murphy's Law states that if something can go wrong, it will.
- **Parkinson's Law** states that work expands to fill the time allowed.
- In traditional estimates, people often add a buffer to each task and use the additional time whether it's needed or not.
- Critical chain scheduling removes buffers from individual tasks and instead creates:
 - A **project buffer** or additional time added before the project's due date.
 - Feeding buffers or additional time added before tasks on the critical path, located every place a non-Critical Chain task feeds a Critical Chain task.

Example

KOLL BUSINESS CENTER County Engineers Design Department

Activity	Description	Preceding Activity	
А	Application approval	None	
В	Construction plans	А	
С	Traffic study	А	
D	Service availability check	А	
E	Staff report	В, С	
F	Commission approval	B, C, D	
G	Wait for construction	F	
Н	Occupancy	E, G	

Program Evaluation and Review Technique (PERT)

- PERT is a network analysis technique used to estimate project duration when there is a high degree of uncertainty about the individual activity duration estimates.
- PERT uses probabilistic time estimates:
 - Duration estimates based on using optimistic, most likely, and pessimistic estimates of activity durations, or a three-point estimate.

PERT Formula and Example

PERT weighted average =

optimistic time + 4X most likely time + pessimistic time

6

• Example:

PERT weighted average =

<u>8 workdays + 4 X 10 workdays + 24 workdays</u> = **12 days**

6

where:

optimistic time= 8 days

most likely time = **10 days**

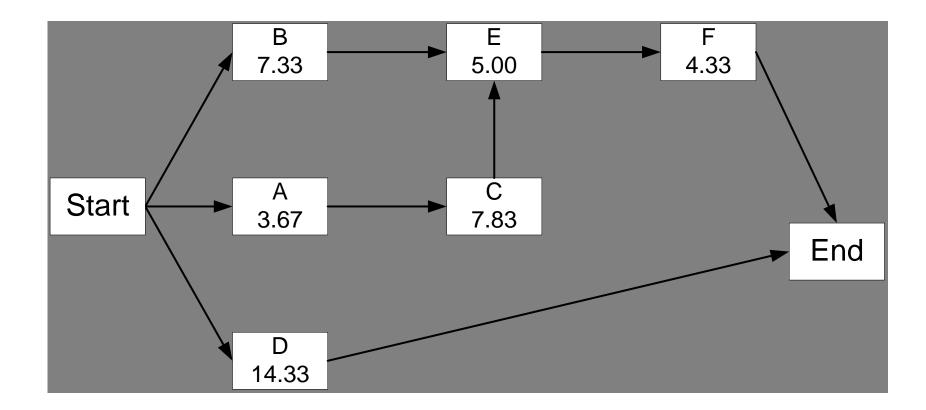
pessimistic time = 24 days

Therefore, you'd use **12 days** on the network diagram instead of 10 when using PERT for the above example.

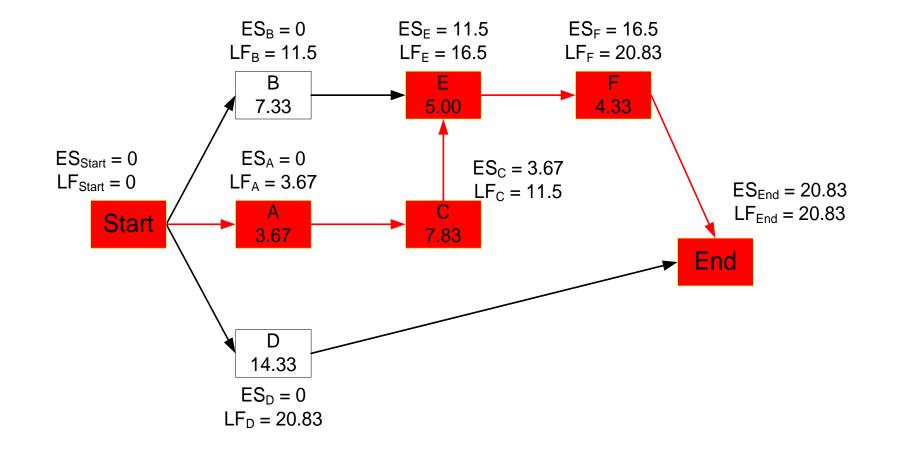
Probabilistic Activity Times

- These provide an estimate of the mean and variance of a beta distribution:
- mean (expected time):

$$t = \frac{a + 4m + b}{6}$$


• variance
$$v = \left(\frac{b-a}{6}\right)^2$$

• Standard deviation $\sigma = \sqrt{V}$


Example

Activities	Predecessor	Duration Estimation (weeks)			Expected	Varian-
	sors	Optimistic	Likely	Pessimistic	Duration	ce
А	-	2	6	14	3.67	4.00
В	A	4	7	12	7.33	1.78
С	A	2	8	13	7.83	3.36
D	A	12	14	18	14.33	1.00
E	B, C	3	5	7	5.00	0.44
F	E	3	4	7	4.33	0.44

Example : Network

Example : Critical Path

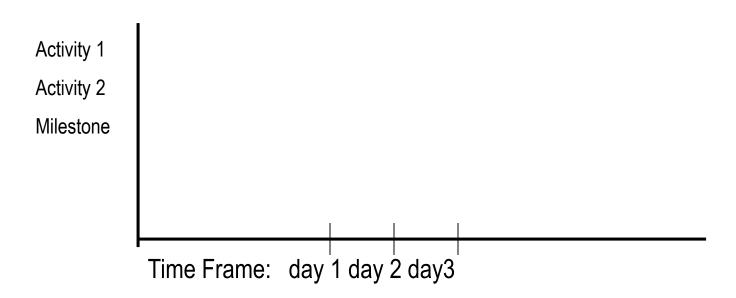
Example

- Expected duration of this project
 = 3.67+7.83+5.00+4.33 = 20.83
- Variance = 4.00 + 3.36 + 0.44 + 0.44= 8.25
- Standard deviation $(\sigma) = 2.87$

Question from the Example?

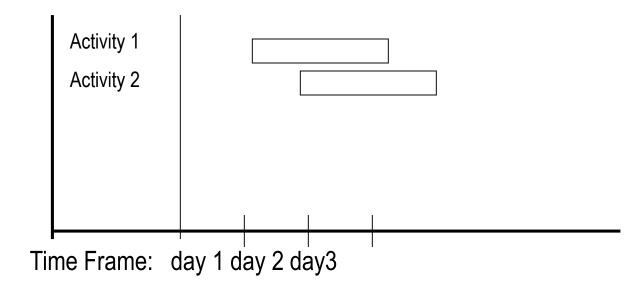
• What is the probability that the project will be completed with in 25 weeks?

$$Z = \frac{x - x}{\sigma} = \frac{25 - 20.83}{2.87} = 1.45$$

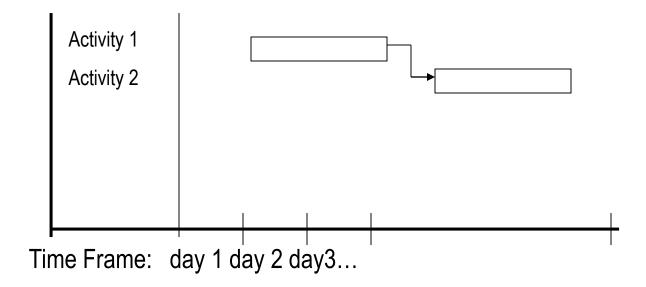

• Probability = 92.7 %

Gantt Chart

- Visual scheduling tool
- Graphical representation of information
- Show dependencies between tasks, personnel, and other resources allocations
- Track progress towards completion

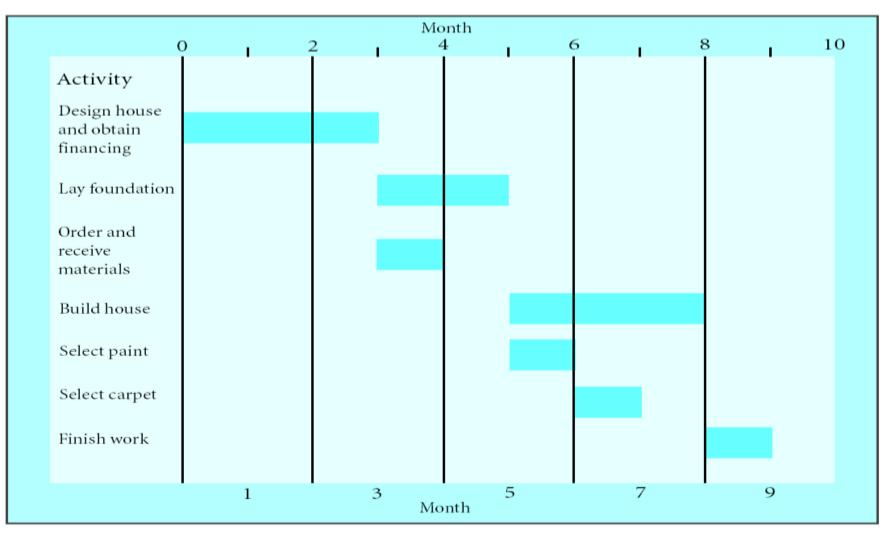

Building Gantt Chart

- List all tasks and milestones from the project along the vertical axis
- List time frame along the horizontal axis

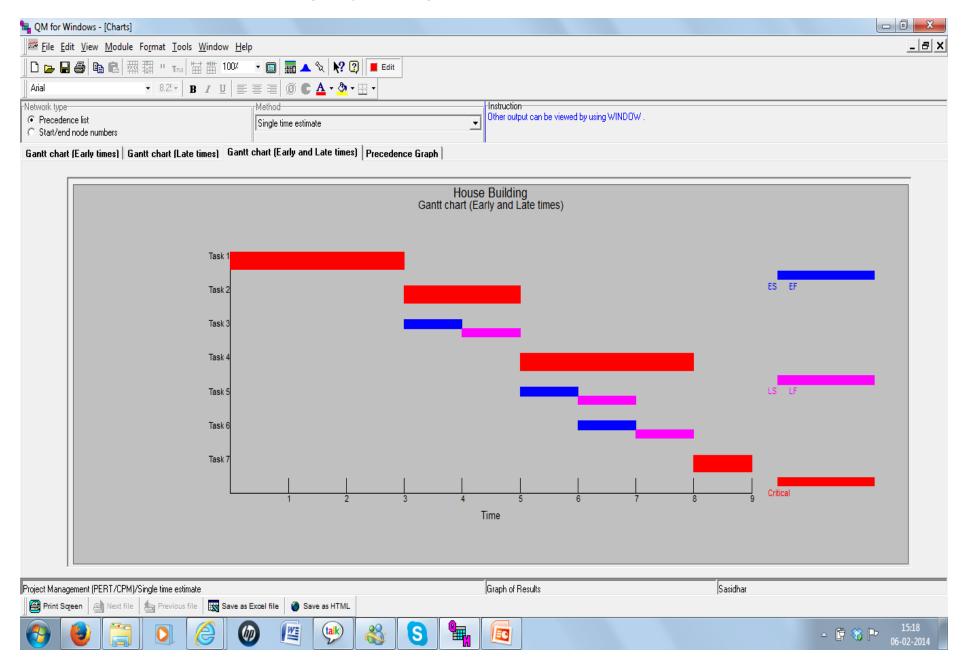

Building Gantt Chart

- Activities: Create box the length of each activity time duration
 - E.g., activity one is scheduled from day1-day3

Building Gantt Chart


- Dependencies: Show dependencies between activities with arrows
 - E.g., activity 2 cannot start until activity 1 is complete

Sequence of Activities of The Project -House Building


Number	Activity	Predecessor	Duration
1	Design house and obtain financing		3 months
2	Lay foundation	1	2 months
3	Order and receive materials	1	1 month
4	Build house	2,3	3 months
5	Select paint	2, 3	1 month
6	Select carper	5	1 month
7	Finish work	4, 6	1 month

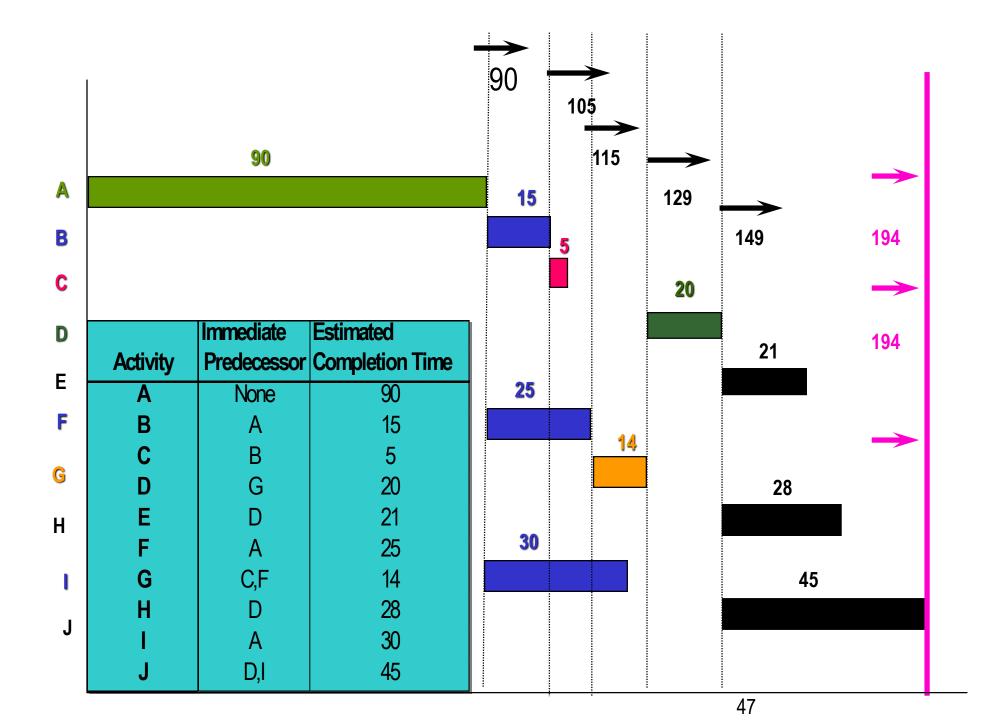
Gantt Chart for House Building Project

A Gantt chart

Gantt Chart for House Building Project using QM for Windows

Gantt Charts

- Establish a *time-phased network*
- ✓ Can be used as a *tracking tool*


Benefits of Gantt charts

- 1. Easy to *create* and *comprehend*
- 2. Identify the schedule *baseline* network
- 3. Allow for *updating* and *control*
- 4. Identify *resource needs*

Example

Precedence Relationships Chart

Activity	Immediate Predecessor	Estimated Completion Time
A	None	90
B	A	15
C	В	5
D	G	20
E	D	21
F	A	25
G	C,F	14
Н	D	28
	A	30
J	D,I	45

Comparison of Gantt Charts and Network Diagrams

Gantt Charts

- Visually shows duration of tasks
- Visually shows time overlap between tasks
- Visually shows slack time

Network Diagrams

- Visually shows dependencies between tasks
- Visually shows which tasks can be done in parallel
- Shows slack time by data in rectangles

Steps

- 1. Identify each activity
 - Requirements Collection
 - Screen Design
 - Report Design
 - Database Design
 - User documentation
 - Software programming
 - Installation and testing

2. Determine time estimates and expected completion times for each activity.

Figure 2.20 Estimated Time Calculations for the SPTS Project

	TIME ESTIMATE (in weeks)			$\frac{\text{EXPECTED TIME (ET)}}{o + 4r + p}$
ACTIVITY	0	r	р	6
1. Requirements Collection	1	5	9	5
2. Screen Design	5	6	7	6
3. Report Design	3	6	9	6
4. Database Design	1	2	3	2
5. User Documentation	3	6	7	5.5
6. Programming	4	5	6	5
7. Testing	1	3	5	3
8. Installation	1	1	1	1

3. Determine sequence of activities

ACTIVITY	PRECEDING ACTIVITY
1. Requirements Collection	
2. Screen Design	1
3. Report Design	1
4. Database Design	2,3
5. User Documentation	4
6. Programming	4
7. Testing	6
8. Installation	5,7

Figure 2.21 Sequence of Activities within the SPTS Project

- Determine critical path 4.
 - Sequence of events that will affect the final project delivery date

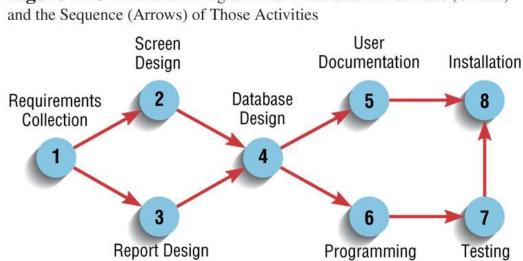


Figure 2.23 A Network Diagram That Illustrates the Activities (Circles)