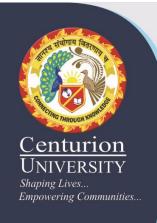
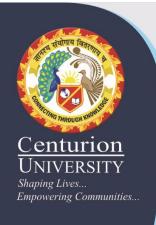


Soil Health & Quality


Dr. Arunabha Pal

Outlines

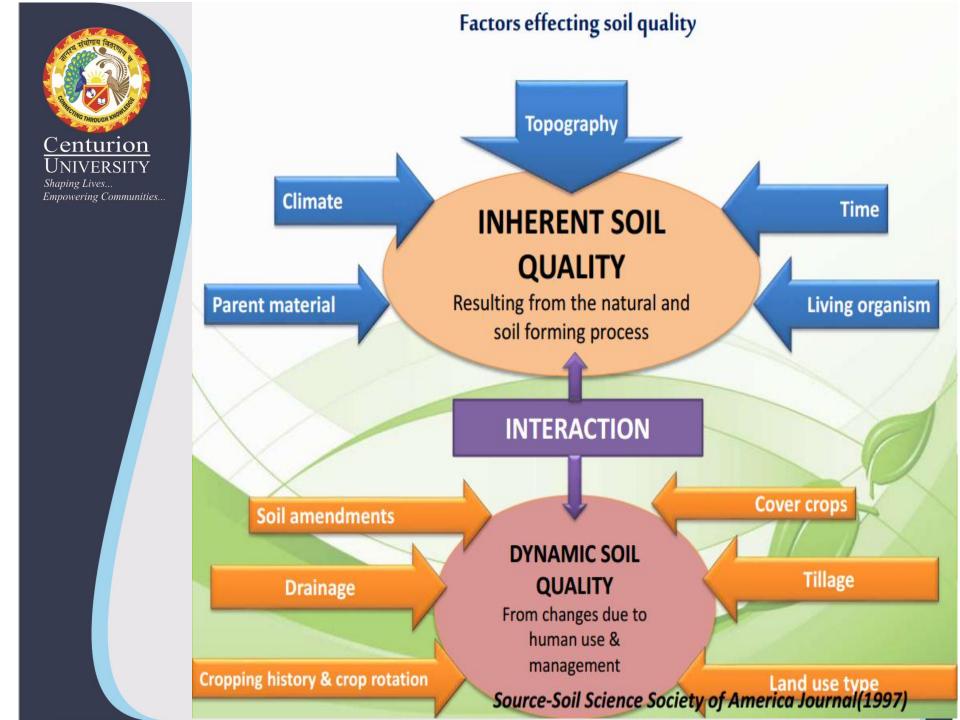

- Introduction
- Soil quality
- Soil Health vs Soil Quality
- Why assess soil quality??
- Assessment of soil quality
- Soil quality parameters
- Soil quality index
- Soil quality assessing tools
- Case Study
- Available Fascilities
- Alternative agriculture
- Conclusion
- •References

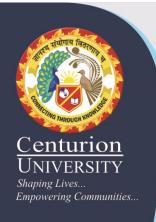
Introduction

WHAT IS SOIL??

- Soil also known as Soul Of Infinite Life.
 Because of 5 basic functions Sustaining plant and animal life
 Regulating water
 Filtering potential pollutants
 Cycling nutrients
 Supporting structures
- Healthy soil is essential for the production of crops used to feed humans and livestock. In addition to providing a stable base to support plant roots, soil stores water and nutrients required for plant growth.
- Unfortunately, industrial & Modern agricultural practices continue to damage it and depleting its quality.
- To restore and management of soil fertility and reduce soil pollution assessment of soil quality through establishment of various quality parameters is one of the most essential process.

Soil Quality


The integration of growth-enhancing factors that makes a soil productive has often been referred to as "soil quality" or *How well soil does what we want it to do.*


As per USDA(1994) Soil quality can be defined as-

The capacity of a specific kind of soil to function, within its natural or managed ecosystem boundaries, to sustain animal and plant productivity, maintain or enhance air and water quality and support human health and habitats.

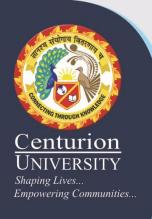
Soil Quality mainly encompasses two distinct but related parts-

- 1. Innate Qualities (Soil Formation & Characteristics)
- 2. Dynamic Qualities (Soil Erosion & Management)

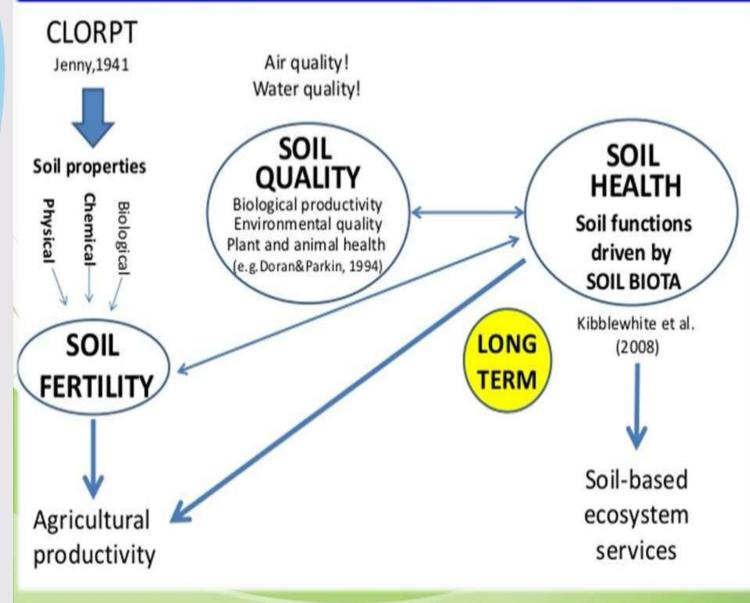
Soil Quality and Soil Health

Soil Quality- (Soil Condition to predict its productivity)

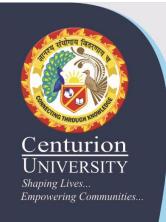
Capacity of a soil to function within its ecosystem boundary to sustain biological productivity, maintain environ mental quality and promote plant and animal health


-Doran & Parkin, 1994

Soil scientists prefer "soil quality", which describes quantifiable physical, chemical and biological characteristics.


Soil Health- (Soil condition to predict how soil function)

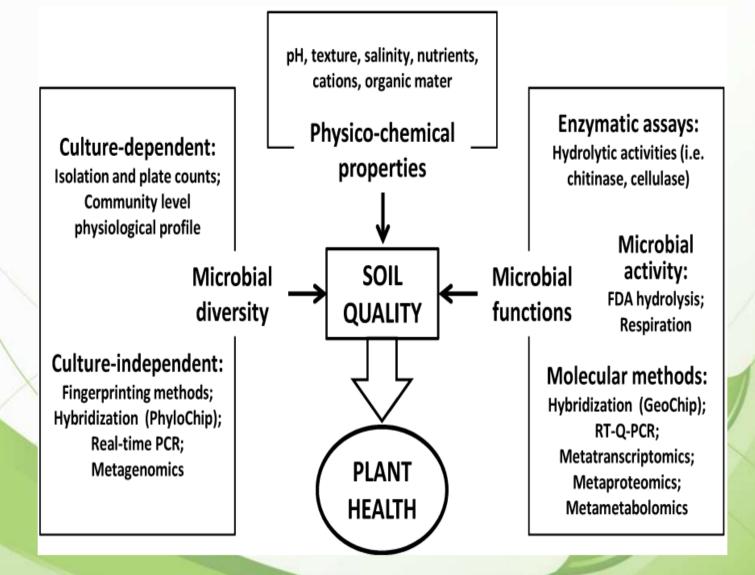
Defined as the continued capacity of soil to function as a vital living system, by recognizing that it contains biological elements that are key to ecosystem function within land-use boundaries.


-Doran and Zeiss, 2000; Karlen et al., 2001

SOIL FERTILITY-SOIL QUALITY-SOIL HEALTH

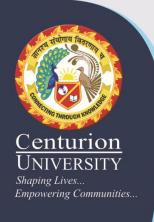
Source-Soil Quality and Soil Health, NRCS, USDA, USA

Wny Assess Soil


Quality???
Soil quality is evaluated to learn about the effects of management practices on soil function. Reasons for evaluating soil quality fall into these categories:-

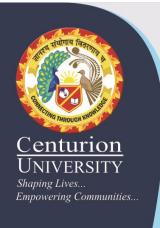
- Awareness and education
- Evaluation of practice effects and trouble-shooting
- **Evaluation of alternative practices**
- Assessment as an adaptive management tool

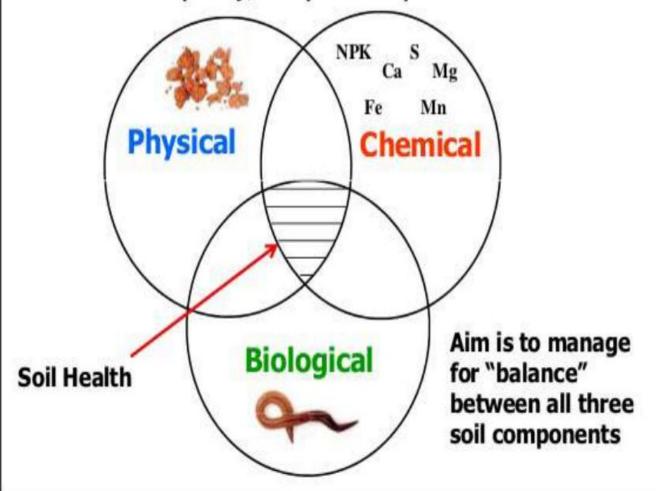
Hierarchical relationship of soil quality to agricultural sustainability Source- SSSAJ, Andrews, 1998


Source- Antonio de Vicente, Diversity(2012), Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora", Malaga, Spain

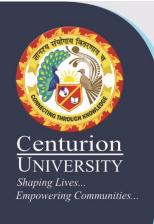
ASSESSMENT OF SOIL QUALITY

It cannot be determined by measuring only crop yield, water quality, or any other single outcome it is an assessment of how it performs all of its functions now and how those functions are being preserved for future use


Soil quality cannot be measured directly, so we evaluate *indicators*


- Indicators are measurable properties of soil or plants that provide clues about how well the soil can function.
- Indicators can be physical, chemical, and biological characteristics.

Useful indicators Means:


- Should be easy to measure.
- Measure changes in soil functions
- Re accessible to many users and applicable in field conditions.
- Are sensitive to variations in climate and management.

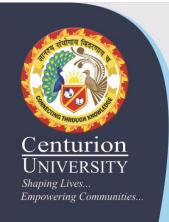
Soil quality is the capacity of a soil to function (in a farm or ecosystem) and thereby sustain productivity, maintain environmental quality, and promote plant and animal health

Source- Ranchworx, Pasture Aerators, North America (1998)

Soil Quality Parameters

Pedological or Soil factors that influencing its Quality can be divided into 3 broad categories as-

Physical Factors-

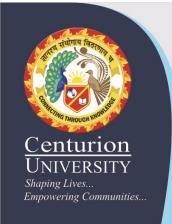

- Soil depth & Water Holding Capacity
- Physical environment- Structure, Aeration, Drainage, Texture, Density
- Soil Erosion- Water and Wind Erosion

Chemical Factors-

- Nutrient Availability- Capacity & Intensity Factor
- Soil Reaction- Acidic, Saline, Sodic Soil
- Presence of toxic elements
- Ion Exchange Phenomena(CEC & AEC)

Biological Factors-

- Microorganisms present and their interaction among themselves
- · Earth worms activities
- Soil Enzyme Activity
- Organic Matter content

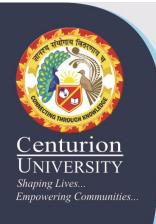


Quality

Soil Physical Indicators Selected for Assessing the Soil

Physical Indicators	Units	Relationship with Soil Quality	Sensitivity Index
Soil Depth	cm	Productivity Potential and Surface Stability	Medium
Soil Texture	% (Sand, Silt, Clay)	Water Retention, Nutrient Retention, Infiltration etc	High
Bulk Density	Mg/m ³	WHC, NHC, Aeration, Organic Carbon, Root Penetration etc	Medium
Available Water Content	%	Plant Water Relation	Medium
Aggregate Stability (Top 30cm)	%	Potential Soil Erosion, Infiltration, Water Retention.	High

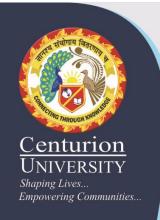
Source- Zueng-Sang Chen(1999), Department of Agricultural Chemistry, National Taiwan University, Taipei



Soil Chemical Indicators Selected for Assessing the Soil

Cnemical Indicators	Units	Relationship with	Sensitivity Index
		Soil Quality	
рН	-	Biological Activity and Soil Reaction	High to Very High+
EC	dS/m	Chemical Activity, Plant Nutrition	Moderate to high+
Organic C	ppm	Soil Stability, Erosion Control, Aggregation	High
Available N	ppm	Essential Nutrient of Plant	Moderate to High
Available P	ppm	Essential Nutrient of Plant	Moderate to High
Available K	ppm	Essential Nutrient of Plant	Moderate
Available Cd	ppm	Toxic Level for Plant Growth and Soil Quality	Moderate to high+
Available Pb	ppm	Toxic Level for Plant Growth and Soil Quality	Moderate to high+
Available Cu	ppm	Toxic Level for Plant Growth and Soil Quality	Moderate to high+
Available Zn	ppm	Essential Nutrient of Plant, Toxic in Excess	Moderate to High+

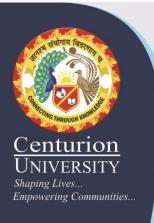
+ refer to variability with crops type


Source- Zueng-Sang Chen(1999), Department of Agricultural Chemistry, National Taiwan University, Taipei

Soil Biological Indicators Selected for Assessing the Soil

0 114			
Biological Indicators	Units	Relationship with Soil Quality	Sensitivity Index
Mineralizable N	Kg N/ha/30cm top layer	Organic Matter, Plant Nutrition, Microbial activities, CO ₂ Production	High
Biomass C	Kg C/ha/30cm top layer	Microbial potential activity, C pool, Organic matter	High
Biomass N	Kg N/ha/30cm top layer	Microbial potential activity, N pool, Organic matter	Moderate
Biomass P	Kg P/ha/30cm top layer	Microbial potential activity, P pool, Organic matter	Moderate
Soil Respiration	Kg C/ha/day	Microbial activity, Microbial biomass, C-loss & Gain	Moderate
Earth worms	Nos/ m ³	Relative biomass, Plant essential enzymes & chemicals	Less
Crop Yield	Kg/ha	Plant available nutrient content, productivity & soil quality	High

Source- Zueng-Sang Chen(1999), Department of Agricultural Chemistry,
National Taiwan University, Taipei


Soil Quality Index

Soil Quality Index = f(SP, P, E, H, ER, BD, FQ, MI)

Here,

SP	Soil Property
Р	Potential Productivity
E	Environmental Factor
Н	Health of human and animals
ER	Erodibility
BD	Biological Diversity
FQ	Food Quality
MI	Management Inputs

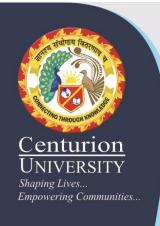
Source- J.F. Parr et. al., ARS, USDA, 1998

Methods of Assessment

Farmers Methods Statistical Methods

Conventional Method

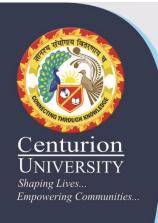
Soil Color

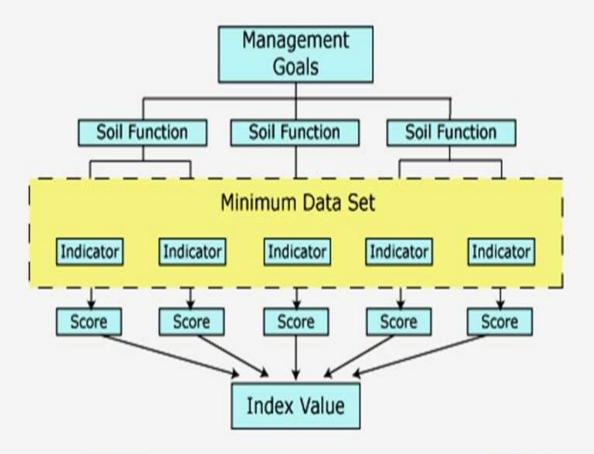

Measure of Dispersions

Soil Index

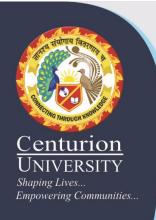
Soil Smell

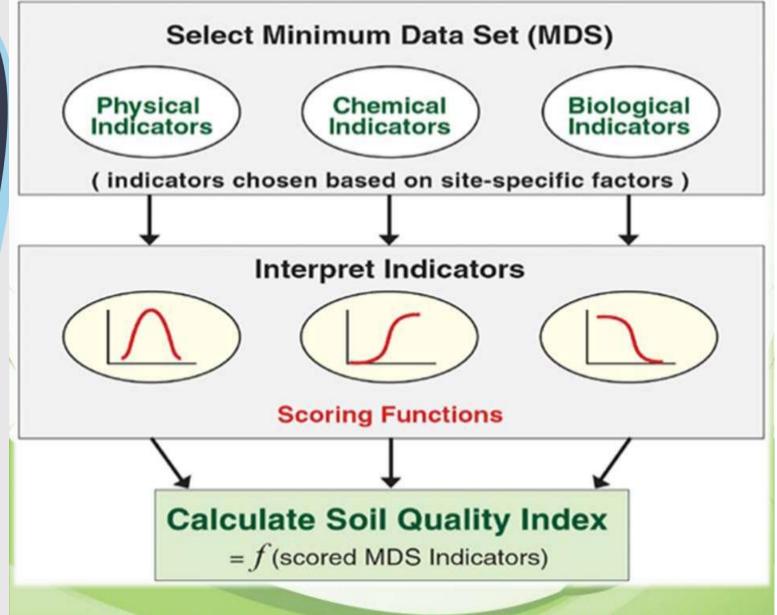
Soil Management
Assessment
Framework


Scoring

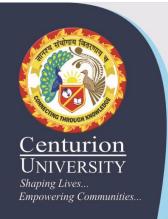

Farmers Method

- Farmer who work daily with soils usually note that some of their fields perform better than others.
- They tend to judge the quality or condition of their soils by such observable factors as the performance of the crop plants, the colours associated with accumulation of organic matter, the ease of tillage, the presence of standing water after rain storms.





Scoring Method



Source- Andrews, S.S., D.L. Karlen, and J.P. Mitchell. 2001. A comparison of soil quality indexing methods for vegetable production systems in Northern California. Agriculture, Ecosystems and Environment 1760: 1-21.

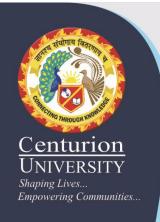

Source- Andrews, S.S., D.L. Karlen, and J.P. Mitchell. 2001. A comparison of soil quality indexing methods for vegetable production systems in Northern California. Agriculture, Ecosystems and Environment 1760: 1-21.

TABLE 28.5. Proposed minimum data set (MDS) of physical, chemical, and biological indicators for assessing soil quality

Indicator	Rationale for assessment
Biological	
Microbial biomass C and N	Describes microbial catalytic potential and repository for carbon and nitrogen
	Provides an early warning of management effects on organic matter.
Potentially mineralizable N	Describes soil productivity and nitrogen supplying potential
	Provides an estimate of biomass.
Soil respiration	Defines a level of microbial activity
	Provides an estimate of biomass activity.
Chemical	
Soil organic matter (OM)	As a proxy for soil fertility and nutrient availability.
pH	Biological and chemical activity thresholds.
Electrical conductivity	Plant and microbial activity thresholds.
Extractable N, P, and K	Describes plant-available nutrients and potential for N loss Indicates productivity and environmental quality.
Physical	
Soil texture	Indicates how well water and chemicals are retained and transported.
	Provides an estimate of soil erosion and variability.
Soil depth and rooting	Indicates productivity potential.
	Evens out landscape and geographic variability.
Infiltration and soil bulk	Describes the potential for leaching, productivity, and erosion
density (pb)	ρb is used to correct soil analyses to volumetric basis.
Water holding capacity	Describes water retention, transport, and erosion.
	Available water is used to calculate soil bulk density and organic matter.

Source- Zueng-Sang Chen(1999), Department of Agricultural Chemistry, National Taiwan University, Taipei

Case Study

Soil Quality Changes and Quality Status: A Case Study of the Subtropical China Region Ultisol

A. C. Odunze, Wu Jinshui, Liu Shoulon, Zhu Hanhua, Ge Tida, Wang Yi and Luo Qiao

Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China.

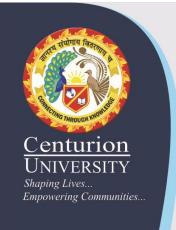
Present affiliation: Department of Soil Science/IAR, Faculty of Agriculture, Ahmadu Bello University, P. M. B 1044, Zaria Nigeria

Aim:

To provide a soil quality assessment frame work and threshold limits for assessing soil quality in Ultisol of subtropical China region.

British Journal of Environment and Climate Change, ISSN: 2231-4784, Vol.: 2, Issue.: 1 (January-March, 2015)

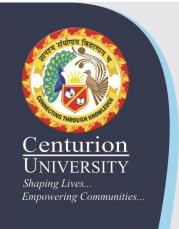
Study Design:


Selected minimum data set for soil quality assessment and threshold limits for the study were total carbon, nitrogen, soil pH and phosphorus, biomass carbon, nitrogen and phosphorus, maize grain and fresh potato tuber yields.

Soil data (2000-2010), maize grain and fresh potato yield data (2000-2009) from a long term experiment under the Institute of subtropical Agriculture, China were analyzed using the SAS statistical package and means were graphically compared to determine threshold limits for selected data set and fitted into a soil quality model.

Place and Duration of Study:

The key Laboratory for Agro-ecological Processes in Subtropical Regions, Chinese Academy of Sciences; Institute of Subtropical Agriculture, Changsha, Hunan China long-term experimental site in Taoyuan county

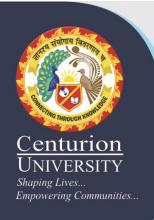

Conducted from the year 2000 to 2010.

Methodology:

Soils samples at the experimental fields were obtained from depths 0-20 cm using an auger at each replicate in triplicates and homogenized to obtain a composite sub sample, air-dried, sieved through 2.0 mm to obtain samples for analysis in the Laboratory.

Parameters analyzed for were organic carbon concentration, measured by the combustion method using an automated C/N analyzer (Vario MAX CN, Elemental Co., Germany) while total nitrogen was by the Kjeldahl method of ISSCAS (1978). Microbial carbon, nitrogen and phosphorus levels were determined using the chloroform-fumigation-extraction method (Jenkinson and Powlson, 1976; Vance et al., 1987; Brookes et al., 1982) and adopting the conversion factors 0.45 (Wu et al., 1990), 0.45 (Brookes et al., 1985), and 0.29 (Wu et al., 2000) respectively for the C, N and P.

Extractable N and Olson P were taken from values obtained from the non fumigated soil samples.


Data obtained were statistically analyzed using the SAS package for ANOVA and significant means were separated using the Duncan's New Multiple Range Test (DNMRT).

Treatment means were also matched graphically to delineate critical threshold limits between classes for each parameter. Soil quality was assessed by using the Parr et al. (1992) equation;

SQ = f(SP,P,E,H,ER,BD,FQ,MI);

Where SQ= soil quality, SP= soil properties, P = potential productivity, E=environmental factor, H= health (human/animal), ER= erodibility, BD= biodiversity, FQ= food quality and MI= management input.

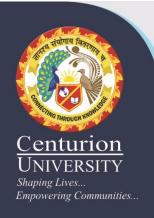
A score scale of 1 to 5 was used in the assessment of parameters in the model; where 1 is best and 5 is the worst condition. However, E, H, ER, FQ and MI were each scored 1.0 because the long-term experiment has an environmental component, health factor, biodiversity, food quality and management input components that are being optimally managed. Therefore SQ= f(SP, P) was used to assess quality of the Ultisol at the uplands and slope land locations.

Treatments in Experiment

In the uplands the following trials were compared:

- Fallow/nil fertilizer application (Fnf)
- ii) Maize-Rape/Nil fertilizer application (M-R/nf)
- iii) Maize-Rape/NPK fertilizer application (M-R/NPK)
- iv) Maize-Rape/NK+ residue (M-R/NK+R)
- v) Sweet Potato-Rape/Straw+NP (P-R/S+NP)

and in the slope land, the following trials were compared:


- i) Fallow-Nil fertilizer (Fnf)
- ii) Sweet potato-Rape/Nil fertilizer (Sp-R/nf)
- iii) Sweet potato-Rape/NPK (Sp-R/NPK)
- iv) Sweet potato-Rape/NP+straw (Sp-R/NP+S)
- v) Pea nut-Broad bean/NP+straw (Pn-Bb/NP+S)
- vi) Maize-Barley/NK+ maize residue (M-B/NK+R)

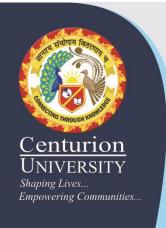
Plot size for each treatment was 3m by 7m i.e., 21mt sq while straw rate was 12.7 t/ha.yr, marsh residue was 10.0 t/ha.yr and fertilizer rates were 224 Kg N ha/yr, 52 Kg P ha₄yr₄ and 174 Kg K ha₄yr₄.

The treatments were replicated three times and maintained for the period 2000-2006/2010.

However, maize yield was monitored on M-R/nf, M-R/NPK and MR/NK+R treatments from 2000-2009 at the uplands.

Potato yield was assessed on Sp-R/nf,Sp-R/NPK and Sp-R/NP+S on the slope lands.

Result Tables


Potato-Rape Slope land Microbial C, N and P with treatments during 2000-2008

Treatments	Biom. C	Biom. N	Biom. P
	mgkg ⁻¹	A-100000000	-194890
F/nf	86.982d	14.924d	4.984b
Sp-R/nf.	107.265c	16.359dc	4.989b
Sp-R/NPK	125,131b	18.336c	6.453a
Sp-R/NPK+S	132.66a	23.956a	7.351a
En-Bb/NPK+S	129.810ba	21.756b	7.387a
MSE	15.4542	4.59047	2.1252
CV%	13.2971	24.0543	33.9687

Means in column with the same letters are not significantly (P ≈0.05) different according to DNMRT

Summary of criteria for soil quality monitoring and evaluation in subtropical China region Ultisol

Nutrients/Grain Yield	Soils in	the Upland		Soils i	n Slope Lan	d
	High	Medium	Low	High	Medium	Low
Total carbon (gkg ⁻¹)	≥ 8.8	8.0- 8.7	< 8.0	≥ 6.8	5.8 -6.8	< 5.80
Total Nitrogen (gkg ⁻¹)	≥ 0.97	0.97-0.87	< .87	≥ 0.85	0.8-8.5	< 0.8
Total Phosphorus (mgkg ⁻¹)	≥ 0.49	0.45-0.49	< 0.45	≥ 0.39	0.37-0.39	<0.37
Biomass carbon (mgkg ⁻¹)	≥ 175	130 - 174	< 130	≥ 125	100 -125	<100
Biomass nitrogen (mgkg ⁻¹)	≥ 33.0	28 -33.0	< 28.	≥ 24.0	18 -24	<18.0
Biomass Phosphorus (mgkg ⁻¹)	≥ 7.5	4.0 - 7.5	< 4.0	≥ 5.8	3.8 -5.8	< 3.80
Soil pH	≥ 5.7	5.55 - 5.7	< 5.55	≥ 5.07	5.01 - 5.07	< 5.01
Maize grain yield (tha ⁻¹)	≥ 7.50	4.50-7.50	< 4.50			
Potato Fresh weight (tha ⁻¹)				≥ 4.0	3.0 -4.0	< 3.0

Results Analysis:

At the uplands, the practice of maize-rape/marsh residue+NK (8.54gkg⁻¹ C, 1.0 gkg⁻¹ N and 5.67 mgkg⁻¹ P) treatments could be rotated with Maize-rape/nil fertilizer (7.51 gkg⁻¹ C, 0.87 gkg⁻¹ and 0.39 mgkg⁻¹ P) to encourage improved soil quality by allowing for more years with soil carbon sequestration, nitrogen and phosphorus credit than years of depletion and discourage soil degradation.

At the slope lands, treatments that combined application of organic and inorganic fertilizer materials [Sweet potato-rape/NP+straw (7.18 gkg⁻¹ C, 0.88 gkg⁻¹ N and 0.38 mgkg⁻¹ P) and Peanut-broadbean/NP+straw (6.81 gkg⁻¹ C, 0.86 gkg⁻¹ N and 0.38 mgkg⁻¹ P)] improved soil quality significantly over time by sequestering significantly higher total carbon, nitrogen and phosphorus better than sole inorganic fertilizer [Sweet potato-rape/NPK (6.52 gkg⁻¹ C, 0.81 gkg⁻¹ N and 0.38 mgkg⁻¹ P)].

Conclusion:

Ultisol at the upland positions had better quality (SQ1) than those at the slope (SQ2) positions. Threshold limits for nutrients, pH and yield of maize and Fresh Potato tubers in the subtropical China region Ultisol was developed.

Facilities Available

٠	oil Quality Car	u		Ē	iel	d lo	cat	ion:	-	-		Yea	of planting:		 Too dry for plantin Too wet for plantin
h	dicator	-				=	+		Pret	000	55.0	Observations	Rat	tingtheindicator	- 12
_		1	2	3	4	5	6	7	8	9	10		1	5	10
1.	Does the soil have good structure and tilth?												Cloddy, powdery, massive, or flaky	Some visible crumb structure	Friable, crumbly
2.	Is the soil free of compacted layers?												Wire flag bends readily; obvious hardpan; turned roots	Some restrictions to penetrating wire flag and root growth	Easy penetration of wire flag beyond tillage layer
1.	Is the soil worked easily?												Many passes and horsepower needed	Medium amount of power and passes needed	Tills easily; requires little power to pull tillage implements
4.	Is the soil full of living organisms?												Little or no observ- able soil life	Some (moving) soil critters	Soil is full of a variety of soil organisms
5.	Are earthworms abundant in the soil?												No earthworms	Few earthworms, earthworm holes, or casts	Many earthworms, earthworm holes, and casts
6.	Is plant residue present and decomposing?												No residue or not decomposing for long periods	Some plant residue slowly decomposing	Residue in all stages of decomposition; earthy, sweet smell
7.	Do crops/weeds appear healthy and vigorous?												Sturned growth, discoloring, uneven stand	Some uneven, stunted growth; slight discoloration	Healthy, vigorously and uniformly growing plants
8.	Do plant roots grow well?												Poor root growth and structure; brown or mushy roots	Some fine roots; mostly healthy	Vigorous, healthy root system with desirable root color
9.	Does water infiltrate quickly?												Water on surface for long periods after light rain	Water drains slowly; some ponding	No ponding after heavy rain or irriga- tion
10.	Is water available for plant growth?												Droughty soil, requires frequent irrigation	Moderate degree of water availability	The right amount of water available at the right time

How to use the card

Enter date, location, crop, year of planting (if perennial crop), and soil moisture level in the field. Select 1–5 representative spots in the field.

Use a shovel or a wire flag to probe the soil. Rate each indicator on a scale from 1 to 10. Refer to the rating guide to determine the score for each indica-

Record your observations. Review and evaluate your scoring

On the back page, write down current management practices. Record ideas for changes in management that you will implement as a result of your assessment.

Source- Extension & Experiment Station Communications, Kerr Administration, Oregon state University, Corvallis, USA

Home

Fact Sheets

Calculators -

Videos

Fact Sheets

Western Australia

South

Grape and Wine

Biological Indicators

- Making Sense of
- Soil Biological Fe
- · How Much Carbo
- Total Organic Car
- Organic Carbon §
- · Carbon Storage -
- · Carbon Storage -
- Soil Organic Cart
- Labile Carbon
- Microbial Biomass
- · Interpreting Micro
- · Tillage, Microbial
- Soil Nitrogen Sup
- Biological Inputs

BIOLOGICAL

Green Manure Calculator

Wheat Yield Potential Calculator

Retaining Stubble Calculator

Organic Matter Biomass Calculator

Biochar Calculator

Bio Product Calculator

CHEMICAL

Lime Comparison Calculator

Lime Benefit Calculator

PHYSICAL

Controlled Traffic Calculator

Gravel and Bulk Density

Deep Cultivation for Non-Wetting Soils

GENERAL

Gross Margin Calculator

T Test

iles Queensland Victoria

General

6. SOIL STRUCTURE

10. LEAF COLOUR

7. AGGREGATE STABILITY

10 cm depth →

20 cm depth --

SOIL HEALTH CARD RESULTS SHEET

01))	п	ű.	1	T.	2
		u	٩	ŭ.	
-	(D)	,	г
	١	7		L	

Date: Location	on / management:			(draw	a sketo	th map	overl	eaf)	100
Soil Type:	Productivity:	Days since 20n	nm Rain: Soil Moisture: d	ry / m	oist / v	vater k	ogged		
RESULT▶	POOR	FAIR	GOOD				ORES	(1 - 9)	
TEST▼	13	46	79	1	2	3	4	5	Av.
1. GROUND COVER	Less than 50% ground cover (ground plants or mulch)	50% to 75% ground cover (ground plants or mulch)	More than 75% ground cover (ground plants or mulch)						
2. PENETROMETER	Wire probe will not penetrate.	Wire probe penetrates with difficulty to less than 20 cm.	Wire probe easily penetrates to 20 cm.						
3. INFILTRATION	More than 7 minutes	3 to 7 minutes	Less than 3 minutes						
4. DIVERSITY OF MACROLIFE	Fewer than two types of soil animals.	Two to five types of soil animals.	More than five types of soil animals.						
5. ROOT DEVELOPMENT	Few fine roots only found near the surface.	Some fine roots mostly near the surface.	Many fine roots throughout.						
6 SOIL STRUCTURE	Mostly in clods or with a	Some clods but also many	Friable, readily breaks into						

20 cm depth → 8. EARTHWORMS 0-3 4-6 more than 6 9. SOIL pH 5 cm depth → pH 5 or lower pH 5.5 pH 6 to pH 7

Some variation in growth and

colour.

Aggregate remained intact

10 mm crumbs.

after one minute.

NB Numbers resulting from the different tests are not intended to be combined to give an overall value of soil health.

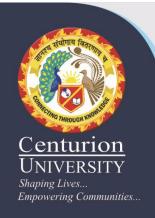
surface crust, few crumbs.

than one minute.

Stunted plants, leaf

discolouration.

Aggregate broke apart in less


uniform plant growth.

Appropriate leaf colour and

10 mm crumbs.

after swirling.

Aggregate remained intact

Indian Scenario

Ministry of Agriculture & Farmers
Welfare, Government of India

SOIL HEALTH CARD MULTIPLE BENEFITS

Issue of 14 crore 'Soil Health Cards' for all the Holdings once in a cycle of 2 years.

Information to the farmers on optimal doses of fertilizer application to Crops.

Nation-wide program to improve soil health.

All 2.53 crore samples collected, 2.42 Crore Sample tested across the country in cycle-1, 2015-17.

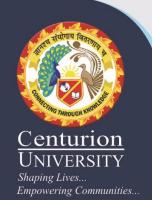
8.94 Crore
'Soil Health cards'
distributed till
12th June, 2017.
Balance distribution soon

Informed choices to the farmers on soil health for increasing productivity.

SOIL HEALTH CARD

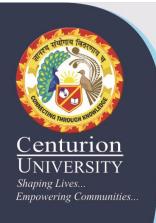
Swasth Dhara, Khet Haraa

Join Us:


agriGol

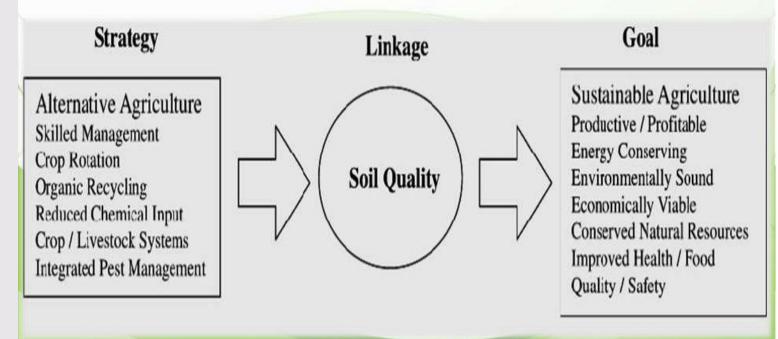
AgriGol

agricoop.gov.in

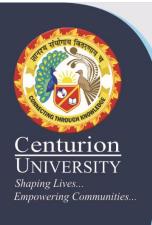


	त्वं सहवारिक विशाम त्वं विश्वतं बरण्या संवयः सावतः सावतः सावतं सावत्वः त्वं कृषि विश्वतः	
after five set six	umi un, de pe	
Steam or som	1	
bur		78

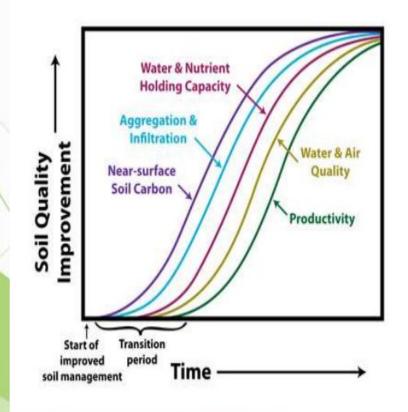
	सॉयल हेल्य ।	niś	प्रयोगश				
	किसान का विव	रण	হালা	# ·			
नाम पता				सॉयल परी	तण परिण	ाम	
याम उप-जिला/तहसील			क्रमांक	परामीटर	परिणाम	इमाई	आकारत
जिला			1	पी एच (pH)			
पित कोड			2	ई भी (EC)			
आधार संख्या			3	जीवक कार्यन (OC)			
माबाइल संख्या			4	उपसद्ध नाइट्राजन (N)			
- 1	पॉयल नमूना वि	वरण	5	उपलब्ध कास्कोरस (P)			
साँचल नम्ना संख्या			6	उपलब्ध पोटेशियम (K)			
नम्बा एका काने न	ने तिथि		7	उपलब्ध सल्कर (S)			
सर्वे संख्या			8	उपलब्ध जिंक (Zn)			
खसरा सं. / Dag No.			9	उपलब्ध बोर्गेन (6)			
खेत का शेवफल			10	उपसंख्य ऑयरन (fe)			
भू-स्थिति (GPS)	असांश :	देशांतर :	11	उपलब्ध समनीज (Mn)			
सिचित भूमि / वर्षा	सिचित भूमि		12	उपलब्ध कॉपर (cu)			
					•		


परामीटर	सॉयल अनुप्रयोग संबंधी सिफारिशे	
सल्फर (5)		
ज़िंक (Zn)		
बोर्गेन (8)		
ऑयरन (Fe)		
मगनीज़ (Mn)		
कॉपर (Cu)		
General Reco	mmendations	
जविक खाद		
जेव उर्वरक		
च्ना/जिप्सम		
	सक्कर (5) ज़िंक (2n) बोर्गन (8) ऑसरन (fe) मंगनीज (Mn) कॉपर (Cu) General Reco जविक खाद	

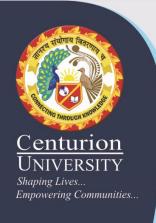
संदर्भ उपज के लिए उत्तरक सिफारिओं (जैविक खाद के साथ)				
क्रमांक	फसस व किस्स	संदर्भ उपज	एन,पी.के. के लिए उर्वरक संयोजन-1	एन.पी.के. के लिए उर्वरक संयोजन-2
1	पान			
2				_
3				
4				
5				



Alternative Agriculture: The Strategy


These are some of the Strategy that should be followed in modern day intensive and chemical based farming system in order to attained the long term production sustainability maintaining soil health or Soil Quality and this is Known as Alternative Agriculture-

Source- Soil-Microbial Systems Laboratory, Agricultural Research Service, U.S. Department of Agriculture, Beltsville, Maryland, U.S.A.



Effect of Improved Soil Management

This Graph shows how soil quality parameters like Carbon Content, Soil aggregation, Infiltration rate, WHC, Nutrient reserve improved with time in a soil with adoption of improved soil management practices that followed in alternative agriculture.

It also result in increased crop productivity that can lead to longevity or sustainability of crop production.

Conclusion

- Research is needed to quantify the indicators or attributes of soil quality into indexes that can accurately and reliably characterize the relative state of soil quality as affected by management practices and environmental stresses.
- The best indicator of soil quality probably will differ according to agro ecological zones, agro climatic factors, and farming systems. It is likely that soil quality indicators would be quite different for paddy rice compared with crops grown in well drained soils.
- A high priority for future research is to identify and quantify reliable and meaningful biological/ecological indicators of soil quality, including total species diversity and genetic diversity of beneficial soil microorganisms.
- We need to know how these indicators are affected by management practices, and how they relate to the productivity, stability and sustainability of farming systems.
- At last there should be some program to aware our uneducated and resource poor farmer about importance of soil health and agricultural sustainability.