THREE PHASE

 ClRCUH
Objectives

- Explain the differences between singlephase, two-phase and three-phase.
- Compute and define the Balanced ThreePhase voltages.
- Determine the phase and line voltages/currents for Three-Phase systems.

SINGLE PHASE TWO WIRE

SIUGIE RHISE SYSTEM

- A generator connected through a pair of wire to a load - Single Phase Two Wire.
- V_{p} is the magnitude of the source voltage, and ϕ is the phase.

SINLGE PHASE THR

SIUGIE RHASE SYSTEM

- Most common in practice: two identical sources connected to two loads by two outer wires and the neutral: Single Phase Three Wire.
- Terminal voltages have same magnitude and the same phase.

POLYRHISE SYSTEN

- Circuit or system in which AC sources operate at the same frequency but different phases are known as polyphase.

TWO PHIASE SYSTEMTHRE WURE

POLYPHISE SYSTEN

- Two Phase System:
- A generator consists of two coils placed perpendicular to each other
- The voltage generated by one lags the other by 90°.
- Three Phase System:
-A generator consists of three coils placed 120° apart.
- The voltage generated are equal in magnitude but, out of phase by 120°.
- Three phase is the most economical polyphase system.

THREE PHISEFOUR WIRE

IMPORTHUG: OF THREE PHMSE SYOTEM

- All electric power is generated distributed in three phase.
- One phase, two phase, or more than three phase input can be taken from three phase system rather than generated independently.
- Melting purposes need 48 phases supply.
- Uniform power transmission and vibration of three phase
- The instantaneous power in a 3ϕ system can be constant (not pulsating).
- High power motors prefer a steady torque especially one created by a rotating magnetic field.
- The amount of wire required for a three phase system is less than required for an equivalent single phase system.
-Conductor: Copper, Aluminum, etc

THREE PHASE GENERIIIUN

FamDars uw

- Three things must be present in order to produce electrical current:
a) Magnetic field
b) Conductor
c) Relative motion
- Conductor cuts lines of magnetic flux, a voltage is induced in the conductor
- Direction and Speed are important

GENERATINGA SINGLE PH:SE

Motion is parallel to the flux.

GENERATINGA SINCIE PHASE

Motion is 45° to flux.
Induced voltage is 0.707 of maximum.

GENERATING A SINCLE PHISE

Motion is perpendicular to flux. Induced voltage is maximum.

GEN: RATIUG A SIWGIE PHISE

Motion is 45° to flux.

CENEREITNGASINCIE PHISE

Motion is parallel to flux.
No voltage is induced.

GENERTINLG A SINCLE PHASE

Notice current in the conductor has reversed.

Motion is 45° to flux.

CENERATINGA SINCIE PHASE

Motion is perpendicular to flux. Induced voltage is maximum.

GENH:ATIUG A SIWGIE PHISE:

Motion is 45° to flux.

CENERETINGA SINCIE PHASE

Motion is parallel to flux.
No voltage is indmeedia
Ready to produce another cycle.

ThRE PHISE CEIERITOB

$$
a
$$

Threephase b output

HENERTORMORM

- The generator consists of a rotating magnet (rotor) surrounded by a stationary winding (stator).
- Three separate windings or coils with terminals $\mathrm{a}-\mathrm{a}^{\prime}, \mathrm{b}-\mathrm{b}^{\prime}$, and $\mathrm{c}-\mathrm{c}^{\prime}$ are physically placed 120° apart around the stator.
- As the rotor rotates, its magnetic field cuts the flux from the three coils and induces voltages in the coils.
- The induced voltage have equal magnitude but out of phase by 120°.

GENERATION OF THREEFHISE AC

THPEE-PHISE W:N:I:ORM

Phase 2 lags phase 1 by 120°. Phase 3 lags phase 1 by 240°.

Phase 2 leads phase 3 by 120°. Phase 1 leads phase 3 by 240°.

GENEREIONOF 3ϕ NOLIG: 8

Phase 1 is ready to go positive. Phase 2 is going more negative. Phase 3 is going less positive.

BALANGED B ϕ VOLTMA:S

- Balanced three phase voltages:

-same magnitude (V_{M})
-120° phase shift

$$
\begin{aligned}
& v_{a n}(t)=V_{M} \cos (\omega t) \\
& v_{b n}(t)=V_{M} \cos \left(\omega t-120^{\circ}\right) \\
& v_{c n}(t)=V_{M} \cos \left(\omega t-240^{\circ}\right)=V_{M} \cos \left(\omega t+120^{\circ}\right)
\end{aligned}
$$

BMLNHED 3 ϕ CURRENIS

- Balanced three phase currents:
-same magnitude (I_{M})
- 120° phase shift

$$
\begin{aligned}
& i_{a}(t)=I_{M} \cos (\omega t-\theta) \\
& i_{b}(t)=I_{M} \cos \left(\omega t-\theta-120^{\circ}\right) \\
& i_{c}(t)=I_{M} \cos \left(\omega t-\theta-240^{\circ}\right)
\end{aligned}
$$

PHASE SEQUENCE

$$
\begin{array}{|l}
v_{a n}(t)=V_{M} \cos \omega t \\
v_{b n}(t)=V_{M} \cos \left(\omega t-120^{\circ}\right) \\
v_{c n}(t)=V_{M} \cos \left(\omega t+120^{\circ}\right)
\end{array}
$$

$$
\begin{aligned}
& V_{a n}=V_{M} \angle 0^{\circ} \\
& V_{b n}=V_{M} \angle-120^{\circ} \\
& V_{c n}=V_{M} \angle+120^{\circ}
\end{aligned}
$$

POSITIVE SEQUENCE

$$
\begin{aligned}
& V_{a n}=V_{M} \angle 0^{\circ} \\
& V_{b n}=V_{M} \angle+120^{\circ} \\
& V_{c n}=V_{M} \angle-120^{\circ}
\end{aligned}
$$

NEGATIVE SEQUENCE

PHASE SEQUENBE

EXMPIE\#1

- Determine the phase sequence of the set voltages:

$$
\begin{gathered}
v_{a n}=200 \cos \left(\omega t+10^{\circ}\right) \\
v_{b n}=200 \cos \left(\omega t-230^{\circ}\right) \\
v_{c n}=200 \cos \left(\omega t-110^{\circ}\right)
\end{gathered}
$$

batanesa voltage nidiond

- Balanced Phase Voltage: all phase voltages are equal in magnitude and are out of phase with each other by 120°.
- Balanced Load: the phase impedances are equal in magnitude and in phase.

THise: RISE:GIIOUII

- POWER
-The instantaneous power is constant

$$
p(t)=p_{a}(t)+p_{b}(t)+p_{c}(t)
$$

$$
=3 \frac{V_{M} I_{M}}{2} \cos (\theta)
$$

$$
=3 V_{r m s} I_{r m s} \cos (\theta)
$$

THine: Puis: Gireul

- Three Phase Power,

$$
\mathbf{S}_{T}=\mathbf{S}_{A}+\mathbf{S}_{B}+\mathbf{S}_{C}=3 \mathbf{S}_{\phi}
$$

THREE PHISE QUMNHIES

QUANTITY

SYMBOL

Phase current
I_{ϕ}
Line current

Phase voltage

Line voltage

PHASE voltielis and lily voluehis

- Phase voltage is measured between the neutral and any line: line to neutral voltage
- Line voltage is measured between any two of the three lines: line to line voltage.
- Line current $\left(\mathrm{I}_{\mathrm{L}}\right)$ is the current in each line of the source or load.
- Phase current $\left(\mathrm{I}_{\phi}\right)$ is the current in each phase of the source or load.

THRE PHISE GONN: HIIIN

SOUREE-IOMD COWUEHIOW

SOURCE LOAD CONNECTION

Wye
Wye
Wye
Delta
Delta
$\Delta-\Delta$

Delta
Wye
$\Delta-Y$

- Common connection of source
- Delta connected sources: the circulating current may result in the delta mesh if the three phase voltages are slightly unbalanced.
- Common connection of load

DELT/: not be accessible, load can not be added or removed easily.

WYE GONV:GIION

WYE CONLEHIED CHERATOR

WTE COWH:HISIO:D

BALDNGED Y-Y GONNEHION

- In Y-Y system:

PHASE VOLTAGES, Ψ_{ϕ}

- Phase voltage is measured between the neutral and any line: line to neutral voltage

PHASE VOLTAGES, V_{ϕ}

$$
\begin{aligned}
& \mathrm{V}_{\mathrm{an}}=\mathrm{V}_{\mathrm{M}} \angle 0^{\circ} \quad \text { volt } \\
& \mathrm{V}_{\mathrm{bn}}=\mathrm{V}_{\mathrm{M}} \angle-120^{\circ} \text { volt } \\
& \mathrm{V}_{\mathrm{cn}}=\mathrm{V}_{\mathrm{M}} \angle 120^{\circ} \quad \text { volt }
\end{aligned}
$$

LINE VOLIAOES, I_{L}

- Line voltage is

 measured between any two of the three lines: line to line voltage.

CINE VOLTAOES, I_{L}

$$
\begin{aligned}
& \mathrm{V}_{\mathrm{ab}}=\mathrm{V}_{\mathrm{an}}-\mathrm{V}_{\mathrm{bn}} \\
& \mathrm{~V}_{\mathrm{bc}}=\mathrm{V}_{\mathrm{b}}-\mathrm{V}_{\mathrm{cn}} \\
& \mathrm{~V}_{\mathrm{ca}}=\mathrm{V}_{\mathrm{cn}}-\mathrm{V}_{\mathrm{an}}
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{V}_{\mathrm{ab}}=\sqrt{3} \mathrm{~V}_{\mathrm{M}} \angle 30^{\circ} \\
& \mathrm{V}_{\mathrm{bc}}=\sqrt{3} \mathrm{~V}_{\mathrm{M}} \angle-90^{\circ} \\
& \mathrm{V}_{\mathrm{ca}}=\sqrt{3} \mathrm{~V}_{\mathrm{M}} \angle 150^{\circ}
\end{aligned}
$$

$\mathrm{V}_{\mathrm{an}}=\mathrm{V}_{\mathrm{M}} \angle 0^{\circ} \quad$ volt
$\mathrm{V}_{\mathrm{bn}}=\mathrm{V}_{\mathrm{M}} \angle-120^{\circ}$ volt
$\mathrm{V}_{\mathrm{cn}}=\mathrm{V}_{\mathrm{M}} \angle 120^{\circ}$ volt

LINE VOLTAGE
 LINE VOLTAGE (V_{L})

$$
\left\{\begin{array}{l}
\mathrm{V}_{\mathrm{ab}}=\sqrt{3} \mathrm{~V}_{\mathrm{M}} \angle 30^{\circ} \quad \text { volt } \\
\mathrm{V}_{\mathrm{bc}}=\sqrt{3} \mathrm{~V}_{\mathrm{M}} \angle-90^{\circ} \text { volt } \\
\mathrm{V}_{\mathrm{ca}}=\sqrt{3} \mathrm{~V}_{\mathrm{M}} \angle 150^{\circ} \quad \text { volt }
\end{array}\right.
$$

- All phase voltages have the same magnitude,

$$
\mathrm{V}_{\phi}=\left|\mathrm{V}_{\mathrm{an}}\right|=\left|\mathrm{V}_{\mathrm{bn}}\right|=\left|\mathrm{V}_{\mathrm{cn}}\right|
$$

- Out of phase with each other by 120°

PROPERTIES OFINE VOLTMEE

- All line voltages have the same magnitude,

$$
\mathrm{V}_{L}=\left|\mathrm{V}_{\mathrm{ab}}\right|=\left|\mathrm{V}_{\mathrm{bc}}\right|=\left|\mathrm{V}_{\mathrm{ca}}\right|
$$

- Out of phase with each other by 120°

REATIONSHP BEHWEEN S_{ϕ} and H_{1}

1. Magnitude

$$
\left|\mathrm{V}_{\mathrm{L}}\right|=\sqrt{3}\left|\mathrm{~V}_{\phi}\right|
$$

2. Phase

- V_{L} LEAD their corresponding V_{ϕ} by 30°

$$
\angle \mathrm{V}_{\mathrm{L}}=\angle \mathrm{V}_{\phi}+30^{\circ}
$$

EXUWPLE 1

- Calculate the line currents

DEITA GONDEHIION

DELTA CONLEGTED SOUREES

BMLNGED $\triangle-\triangle$ GONWEHION

PHISE VOLTAGE RND LINE VOLITAGE

- In $\Delta-\Delta$ system, line voltages equal to phase voltages:

PHASE IOLTAEE N_{ϕ}

- Phase voltages are equal to the voltages across the load impedances.

PHASE OURRENTS, ${ }_{\phi}$

- The phase currents are obtained:

$$
\mathrm{I}_{\mathrm{AB}}=\frac{\mathrm{V}_{\mathrm{AB}}}{\mathrm{Z}_{\Delta}}, \quad \mathrm{I}_{\mathrm{BC}}=\frac{\mathrm{V}_{\mathrm{BC}}}{\mathrm{Z}_{\Delta}}, \quad \mathrm{I}_{\mathrm{CA}}=\frac{\mathrm{V}_{\mathrm{CA}}}{\mathrm{Z}_{\Delta}}
$$

LINE GUBRIENIS, IL

- The line currents are obtained from the phase currents by applying KCL at nodes A, B, and C .

LINE CUBRENIS, I

$$
\begin{aligned}
& \mathrm{I}_{\mathrm{a}}=\mathrm{I}_{\mathrm{AB}}-\mathrm{I}_{\mathrm{CA}} \\
& \mathrm{I}_{\mathrm{b}}=\mathrm{I}_{\mathrm{BC}}-\mathrm{I}_{\mathrm{AB}} \\
& \mathrm{I}_{\mathrm{c}}=\mathrm{I}_{\mathrm{CA}}-\mathrm{I}_{\mathrm{BC}}
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{I}_{\mathrm{a}}=\sqrt{3} \mathrm{I}_{\mathrm{AB}} \angle-30^{\circ} \\
& \mathrm{I}_{\mathrm{b}}=\mathrm{I}_{\mathrm{a}} \angle-120^{\circ} \\
& \mathrm{I}_{\mathrm{c}}=\mathrm{I}_{\mathrm{a}} \angle+120^{\circ}
\end{aligned}
$$

PHASE

 CURRENTS (I_{ϕ})$$
\begin{aligned}
& \mathrm{I}_{\mathrm{AB}}=\frac{\mathrm{V}_{\mathrm{AB}}}{\mathrm{Z}_{\Delta}} \\
& \mathrm{I}_{\mathrm{BC}}=\frac{\mathrm{V}_{\mathrm{BC}}}{\mathrm{Z}_{\Delta}} \\
& \mathrm{I}_{\mathrm{CA}}=\frac{\mathrm{V}_{\mathrm{CA}}}{\mathrm{Z}_{\Delta}}
\end{aligned}
$$

LINE CURRENTS (L_{L})

$$
\begin{aligned}
& \mathrm{I}_{\mathrm{a}}=\sqrt{3} \mathrm{I}_{\mathrm{AB}} \angle-30^{\circ} \\
& \mathrm{I}_{\mathrm{b}}=\mathrm{I}_{\mathrm{a}} \angle-120^{\circ} \\
& \mathrm{I}_{\mathrm{c}}=\mathrm{I}_{\mathrm{a}} \angle+120^{\circ}
\end{aligned}
$$

PROPERTIES OF PHASE CURPENT

- All phase currents have the same magnitude,

$$
\mathrm{I}_{\varphi}=\left|\mathrm{I}_{\mathrm{AB}}\right|=\left|\mathrm{I}_{\mathrm{BC}}\right|=\left|\mathrm{I}_{\mathrm{CA}}\right|=\left|\frac{v_{\varphi}}{\mathrm{Z}_{\Delta}}\right|
$$

- Out of phase with each other by 120°
- All line currents have the same magnitude,

$$
I_{L}=\left|I_{a}\right|=\left|I_{b}\right|=\left|I_{c}\right|
$$

- Out of phase with each other by 120°

1. Magnitude

$$
\left|I_{L}\right|=\sqrt{3}\left|I_{\phi}\right|
$$

2. Phase

- I_{L} LAG their corresponding I_{ϕ} by 30°

$$
\angle \mathrm{I}_{\mathrm{L}}=\angle \mathrm{I}_{\phi}-30^{\circ}
$$

A balanced delta connected load having an impedance $20-\mathrm{j} 15 \Omega$ is connected to a delta connected, positive sequence generator having $\mathrm{V}_{\mathrm{ab}}=330 \angle 0^{\circ} \mathrm{V}$. Calculate the phase currents of the load and the line currents.

Civen Quantilies

$\Rightarrow Z_{\Delta}=20-\mathrm{j} 15 \Omega=25 \angle-36.87^{\circ}$
 $\Rightarrow \mathrm{V}_{\mathrm{ab}}=330 \angle 0^{\circ}$

Phase Gurrents

$$
\begin{aligned}
& \mathrm{I}_{\mathrm{AB}}=\frac{\mathrm{V}_{\mathrm{AB}}}{\mathrm{Z}_{\Delta}}=\frac{330 \angle 0^{\circ}}{25 \angle-36.87^{\circ}}=13.2 \angle 36.87^{\circ} \mathrm{A} \\
& \mathrm{I}_{\mathrm{BC}}=\mathrm{I}_{\mathrm{AB}} \angle-120^{\circ}=13.2 \angle-83.13^{\circ} \mathrm{A} \\
& \mathrm{I}_{\mathrm{CA}}=\mathrm{I}_{\mathrm{AB}} \angle+120^{\circ}=13.2 \angle 156.87^{\circ} \mathrm{A}
\end{aligned}
$$

Line Gurrents

$$
\begin{aligned}
\mathrm{I}_{\mathrm{a}} & =\mathrm{I}_{\mathrm{AB}} \sqrt{3} \angle-30^{\circ} \\
& =\left(13.2 \angle 36.87^{\circ}\right)\left(\sqrt{3} \angle-30^{\circ}\right) \mathrm{A} \\
& =22.86 \angle 6.87^{\circ} \\
\mathrm{I}_{\mathrm{b}} & =\mathrm{I}_{\mathrm{a}} \angle-120^{\circ}=22.86 \angle-113.13^{\circ} \mathrm{A} \\
\mathrm{I}_{\mathrm{c}} & =\mathrm{I}_{\mathrm{a}} \angle+120^{\circ}=22.86 \angle 126.87^{\circ} \mathrm{A}
\end{aligned}
$$

BAMNEED WYEDETHSYSTEM

EXIMPE:2

A balanced positive sequence Y connected source with $\mathrm{V}_{\mathrm{an}}=100 \angle 10^{\circ} \mathrm{V}$ is connected to a Δ-connected balanced load $(8+j 4) \Omega$ per phase. Calculate the phase and line currents.

HREPRTSE POHITR DJGURAW: II

EXIMPIE 3

Determine the total power (P), reactive power (Q), and complex power (S) at the source and at the load

A three phase motor can be regarded as a balanced Y-load. A three phase motor draws 5.6 kW when the line voltage is 220 V and the line current is 18.2 A. Determine the power factor of the motor

TH્A AK $\mathcal{Y O U ~}$

