Vertical Curve

Prof.Prafulla Kumar Panda Department of Civil Engineering CUTM, Paralakhemundi

Profiles:

Curve a: Crest Vertical Curve(concave downward)Curve b: Sag Vertical Curve(concave upward)

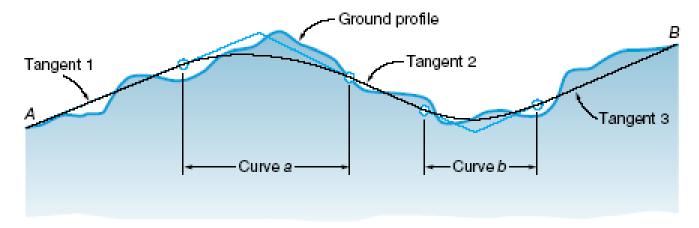


Figure 25-1 Grade line and ground profile of a proposed highway section.

Tangents: Constant Grade (Slope)

Equal-Tangent Vertical Parabolic Curve:

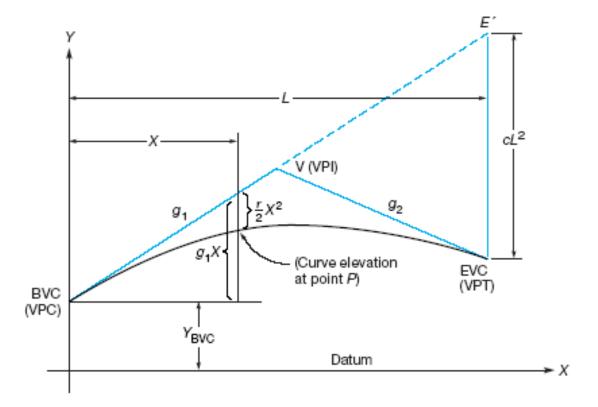


Figure 25-3 Vertical parabolic curve relationships.

Terms:

BVC: Beginning of Vertical Curve	aka PVC
V: Vertex	aka PVI
EVC: End of Vertical Curve	aka PVT
g ₁ : percent grade of <i>back</i> tangent	
g ₂ : percent grade of <i>forward</i> tangent	
L: curve length (horizontal distance) in feet or st	ations
x: horizontal distance from any point on the curv	ve to the BVC
r: rate of change of grade	

Equations:

r = $(g_2 - g_1)/L$ where: $g_2 \& g_1$ - in percent (%) L - in stations

and

$$Y = Y_{BVC} + g_1 x + (r/2) x^2$$

where:

Example: Equal-Tangent Vertical Curve

Given the information show below, compute and tabulate the curve for stakeout at full 100' stations.

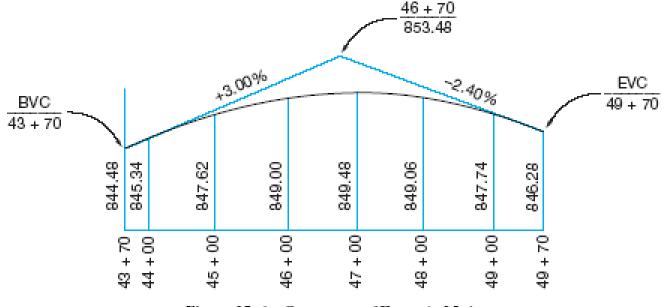
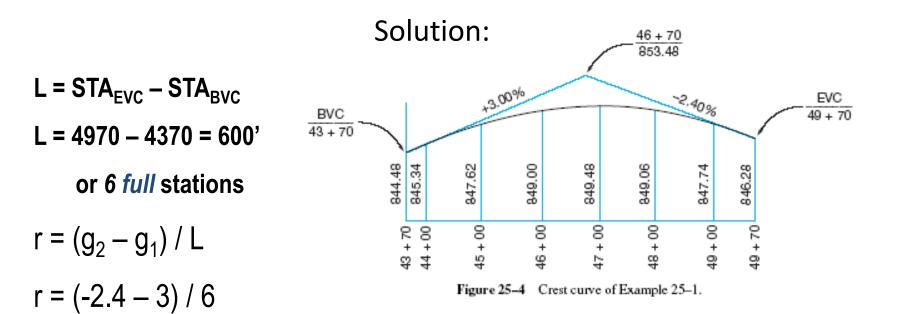



Figure 25-4 Crest curve of Example 25-1.

r = -0.90

 $\begin{aligned} \text{r/2} &= -0.45 \ \% \text{ per station} \\ \text{STA}_{\text{BVC}} &= \text{STA}_{\text{Vertex}} - \text{L} \ / \ 2 &= 4670 - 600 / 2 = \text{STA}_{\text{BVC}} = \text{STA} \ 43 + 70 \\ \text{STA}_{\text{EVC}} &= \text{STA}_{\text{Vertex}} + \text{L} \ / \ 2 &= 4670 + 600 / 2 = \text{STA}_{\text{EVC}} = \text{STA} \ 49 + 70 \\ \text{Elev}_{\text{BVC}} &= \text{Elev}_{\text{vertex}} - \text{g}_1 \ (\text{L}/2) = 853.48 - 3.00 \ (3) = 844.48' \\ \text{Elev}_{\text{EVC}} &= \text{Elev}_{\text{vertex}} - \text{g}_2 \ (\text{L}/2) = 853.48 - 2.40 \ (3) = 846.28 \ ' \end{aligned}$

Solution: (continued)

r/2 = -0.45 % per station

$$Elev_{x} = Elev_{BVC} + g_{1}x + (r/2)x^{2}$$

$$Elev_{44+00} = 844.48 + 3.00(0.30) - 0.45(0.30)^{2} = 845.34'$$

$$Elev_{45+00} = 844.48 + 3.00(1.30) - 0.45(1.30)^{2} = 847.62'$$

$$Elev_{46+00} = 844.48 + 3.00(2.30) - 0.45(2.30)^{2} = 849.00'$$

etc.

Elev₄₉₊₀₀ = 844.48 + $3.00(5.30) - 0.45(5.30)^2 = 847.74'$ Elev₄₉₊₇₀ = 844.48 + $3.00(6.00) - 0.45(6.00)^2 = 846.28'$ (CHECKS)

Solution: (continued)

Station	x (stations)	g ₁ x	r/2 x ²	Curve Elevation
43 + 70 BVC	0.0	0.00	0.00	844.48
44 + 00	0.3	.90	-0.04	845.34
45 + 00	1.3	3.90	-0.76	847.62
46 + 00	2.3	6.90	-2.38	849.00
47 + 00	3.3	9.90	-4.90	849.48
48 + 00	4.3	12.90	-8.32	849.06
49 + 00	5.3	15.90	-2.64	847.74
49 + 70 EVC	6.0	18.00	-6.20	<u>846.28</u>

High and Low Points on Vertical Curves

Sag Curves:

Low Point defines location of catch basin for drainage.

Crest Curves:

High Point defines limits of drainage area for roadways.

Also used to determine or set elevations based on minimum clearance requirements.

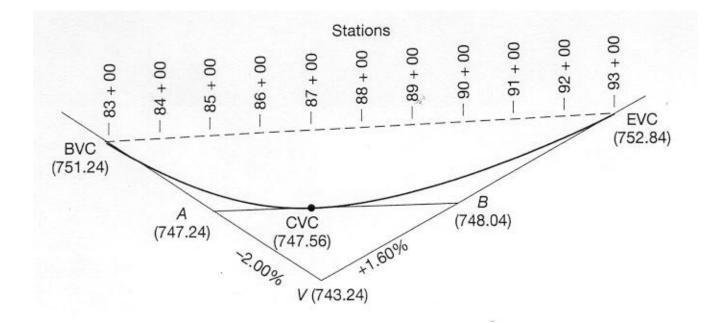
Equation for High or Low Point on a Vertical Curve:

 $y = y_{BVC} + g_1 x + (r/2) x^2$

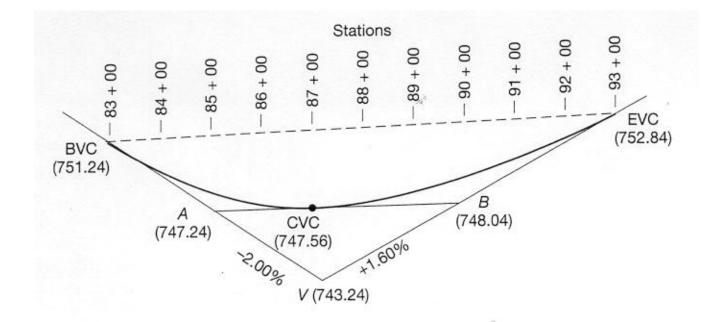
Set dy/dx = 0 and solve for x to locate turning point

- $0 = 0 + g_1 + r x$
- Substitute $(g_2 g_1) / L$ for r $-g_1 = x (g_2 - g_1) / L$ $-g_1 L = x (g_2 - g_1)$ $x = (-g_1 L) / (g_2 - g_1)$

or

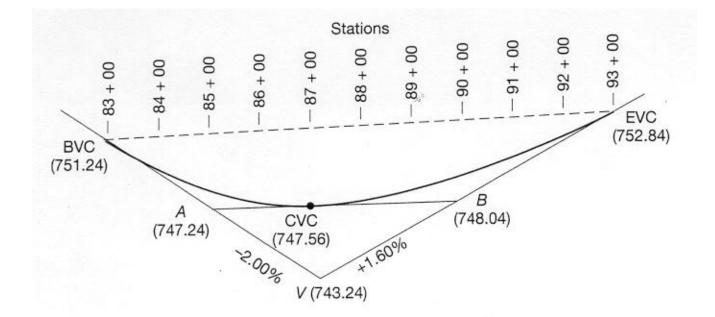

 $x = (g_1 L) / (g_1 - g_2) = g_1/r$ x – distance from BVC to HP or LP

Example: High Point on a Crest Vertical Curve

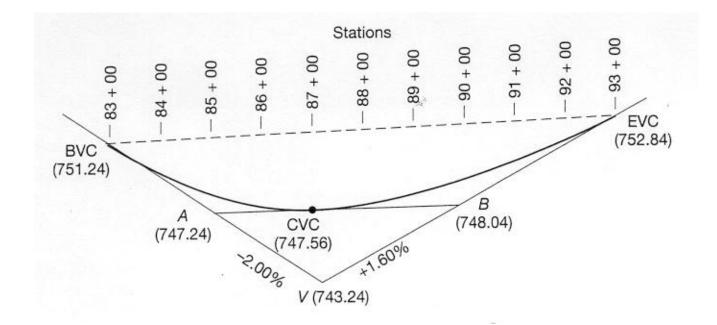

From previous example:

 $g_1 = +3$ %, $g_2 = -2.4$ %, L = 600' = 6 full stations, r/2 = -0.45, $Elev_{BVC} = 844.48'$ $x = (g_1 L) / (g_1 - g_2)$ x = (3)(6) / (3 + 2.4) = 3.3333 stations or 333.33' HP STA = BVC STA + xHP STA = 4370 + 333.33 = HP STA 47 + 03.33 $ELEV_{HP} = 844.48 + 3.00(3.3333) - 0.45(3.3333)^2 = 849.48'$ Check table to see if the computed elevation is reasonable!

Unequal-Tangent Parabolic Curve



Solution:



Solution (continued):

Solution (continued):

Computation of values for g_1x and g_2x

	STATION	<u>x</u>	<u>g₁x</u>	<u>(r/2)x²</u>	Curve Elevation
BVC	83 + 00	0	0	0	751.24'
	84 + 00	1	-2.00		
	85 + 00	2			
	86 + 00	3			
CVC	87 + 00	4			747.56'
	88 + 00	1	0.16		
	89 + 00	2			
	90 + 00	3			
	91 + 00	4			
	92 + 00	5			
EVC	93 + 00	6			
			$g_1 x =$	-2 (1) =	-2.00
			$g_2 x = .16(1) = 0.16$		

Computation of values for $(r_1/2)x^2$ and $(r_2/2)x^2$

	STATION	<u>×</u>	<u>q₁x</u>	<u>(r/2)x²</u>	Curve Elevation
BVC	83 + 00	0	0	0	751.24'
	84 + 00	1	-2.00	0.27	
	85 + 00	2	-4.00		
	86 + 00	З	-6.00		
CVC	87 + 00	4	-8.00		747.56'
	88 + 00	1	0.16	0.12	
	89 + 00	2	0.32		
	90 + 00	З	0.48		
	91 + 00	4	0.64		
	92 + 00	5	0.80		
EVC	93 + 00	6	0.96		
				$(r_1/2)x^2$	$= (0.27)(1)^2 = 0.27$
				$(r_2/2)x^2$	$= (0.12)(1)^2 = 0.12$

Elevation Computations for both Vertical Curves

	STATION	<u>×</u>	<u>g₁x</u>	<u>(r/2)x²</u>	Curve Elevation	
BVC	83 + 00	0	0	0	751.24'	
	84 + 00	1	-2.00	0.27		
	85 + 00	2	-4.00	1.08		
	86 + 00	3	-6.00	2.43		
CVC	87 + 00	4	-8.00	4.32	747.56'	
	88 + 00	1	0.16	0.12		
	89 + 00	2	0.32	0.48		
	90 + 00	З	0.48	1.08		
	91 + 00	4	0.64	1.92		
	92 + 00	5	0.80	3.00		
EVC	93 + 00	6	0.96	4.32		
$Y_1 = -$	Y ₁ = 751.24 - 2.00 + 0.27 = 749.51'					
$Y_2 = -$	747.56 + 0.	16	+ 0.12	2 = 747.	.84'	

Computed Elevations for Stakeout at Full Stations

	STATION	<u>×</u>	<u>q₁x</u>	<u>(r/2)x²</u>	Curve Elevation
BVC	83 + 00	0	0	0	751.24'
	84 + 00	1	-2.00	0.27	749.51'
	85 + 00	2	-4.00	1.08	748.32'
	86 + 00	3	-6.00	2.43	747.67'
CVC	87 + 00	4	-8.00	4.32	747.56'
	88 + 00	1	0.16	0.12	747.84'
	89 + 00	2	0.32	0.48	748.36'
	90 + 00	3	0.48	1.08	749.12'
	91 + 00	4	0.64	1.92	750.12
	92 + 00	5	0.80	3.00	751.36'
EVC	93 + 00	6	0.96	4.32	752.84' ^(OK)

Designing a Curve to Pass Through a Fixed Point

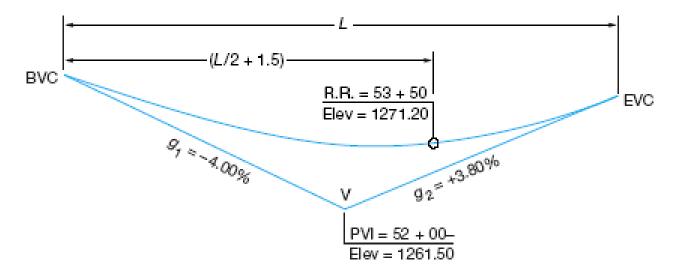
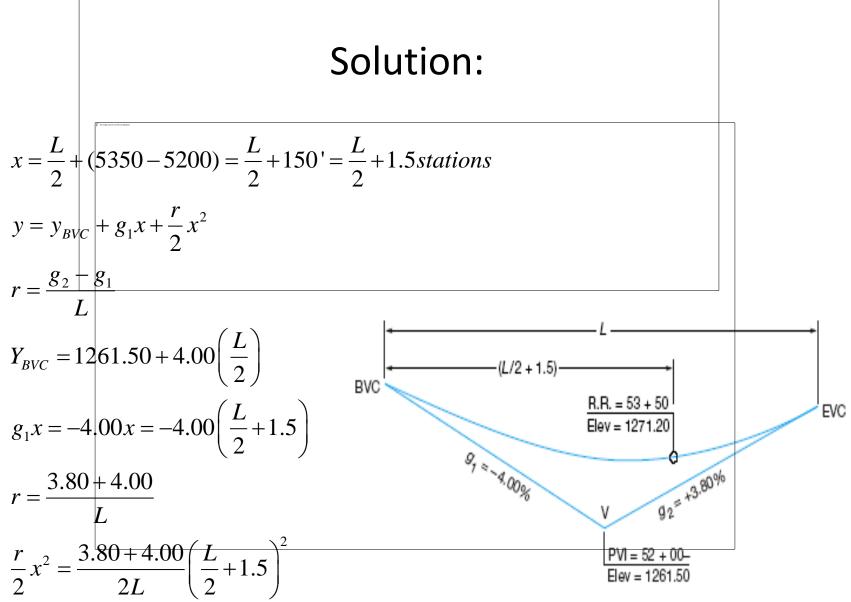
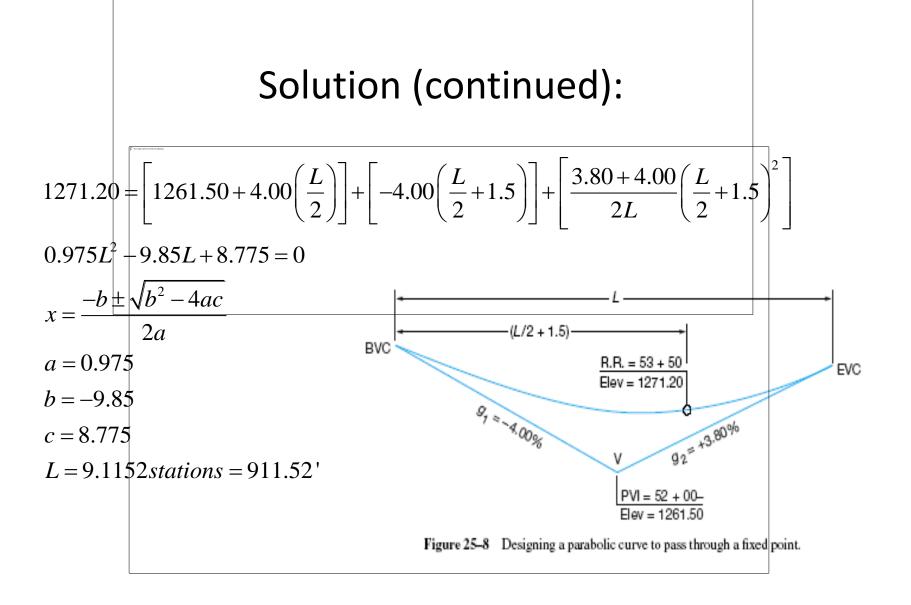
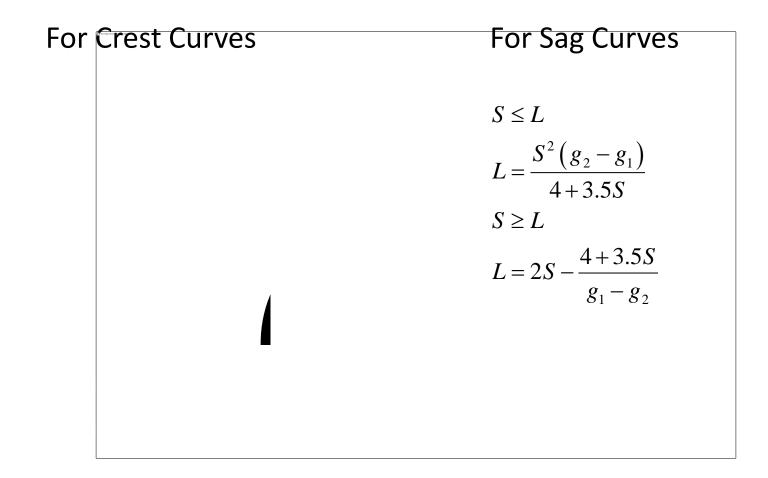


Figure 25-8 Designing a parabolic curve to pass through a fixed point.


Figure 25-8 Designing a parabolic curve to pass through a fixed point.

Sight Distance

- Defined as "the distance required, for a given design speed to safely stop a vehicle thus avoiding a collision with an unexpected stationary object in the roadway ahead" by AASHTO (American Association of State Highway and Transportation Officials)
- Types
 - Stopping Sight Distance
 - Passing Sight Distance
 - Decision Sight Distance
 - Horizontal Sight Distance

Sight Distance Equations

