Vertical Curve

Prof.Prafulla Kumar Panda
 Department of Civil Engineering
 CUTM, Paralakhemundi

Profiles:

Curve a: Crest Vertical Curve (concave downward)
 Curve b: Sag Vertical Curve (concave upward)

Figure 25-1 Grade line and ground profile of a proposed highway section.

Tangents: Constant Grade (Slope)

Equal-Tangent Vertical Parabolic Curve:

Figure 25-3 Vertical parabolic curve relationships.

Terms:

BVC: Beginning of Vertical Curve
V: Vertex
EVC: End of Vertical Curve
aka PVC
aka PVI
aka PVT
g_{1} : percent grade of back tangent
g_{2} : percent grade of forward tangent
L: curve length (horizontal distance) in feet or stations
x : horizontal distance from any point on the curve to the BVC
r r: rate of change of grade

Equations:

$r=\left(g_{2}-g_{1}\right) / L$
where:

$$
\begin{aligned}
& g_{2} \& g_{1} \text { - in percent }(\%) \\
& L-\text { in stations }
\end{aligned}
$$

and
$Y=Y_{B V C}+g_{1} x+(r / 2) x^{2}$
where:
$Y_{B V C}$ - elevation of the BVC in feet

Example: Equal-Tangent Vertical Curve

Given the information show below, compute and tabulate the curve for stakeout at full 100' stations.

Solution:
(continued)
$r / 2=-0.45 \%$ per station
Elev $_{\mathrm{x}}=$ Elev $_{\text {BVC }}+\mathrm{g}_{1} \mathrm{x}+(\mathrm{r} / 2) \mathrm{x}^{2}$
Elev $_{44+00}=844.48+3.00(0.30)-0.45(0.30)^{2}=845.34{ }^{\prime}$
$\mathrm{Elev}_{45+00}=844.48+3.00(1.30)-0.45(1.30)^{2}=847.62{ }^{\prime}$
$\mathrm{Elev}_{46+00}=844.48+3.00(2.30)-0.45(2.30)^{2}=849.00^{\prime}$ etc.

Elev $_{49+00}=844.48+3.00(5.30)-0.45(5.30)^{2}=847.74^{\prime}$
Elev $_{49+70}=844.48+3.00(6.00)-0.45(6.00)^{2}=846.28$ ' $($ CHECKS $)$

Solution:
(continued)

Station	x (stations)	$g_{1} x$	$r / 2 x^{2}$	Curve Elevation
$43+70$ BVC	0.0	0.00	0.00	844.48
$44+00$	0.3	.90	-0.04	845.34
$45+00$	1.3	3.90	-0.76	847.62
$46+00$	2.3	6.90	-2.38	849.00
$47+00$	3.3	9.90	-4.90	849.48
$48+00$	4.3	12.90	-8.32	849.06
$49+00$	5.3	15.90	-2.64	847.74
$49+70$ EVC	6.0	18.00	-6.20	$\underline{846.28}$

High and Low Points on Vertical Curves

Sag Curves:
Low Point defines location of catch basin for drainage.
Crest Curves:
High Point defines limits of drainage area for roadways.
Also used to determine or set elevations based on minimum clearance requirements.

Equation for High or Low Point on a Vertical Curve:

$y=y_{B V C}+g_{1} x+(r / 2) x^{2}$
Set $d y / d x=0$ and solve for x to locate turning point
$0=0+g_{1}+r x$
Substitute $\left(g_{2}-g_{1}\right) / L$ for r
$-g_{1}=x\left(g_{2}-g_{1}\right) / L$
$-g_{1} L=x\left(g_{2}-g_{1}\right)$
$x=\left(-g_{1} L\right) /\left(g_{2}-g_{1}\right)$
or
$x=\left(g_{1} L\right) /\left(g_{1}-g_{2}\right)=g_{1} / r \quad x$ - distance from BVC to HP or LP

Example: High Point on a Crest Vertical Curve

From previous example:
$g_{1}=+3 \%, g_{2}=-2.4 \%, L=600^{\prime}=6$ full stations, $r / 2=-0.45$,
Elev $_{\text {BVC }}=844.48^{\prime}$
$x=\left(g_{1} L\right) /\left(g_{1}-g_{2}\right)$
$x=(3)(6) /(3+2.4)=3.3333$ stations or 333.33'
HP STA $=$ BVC STA $+x$
HP STA $=4370+333.33=$ HP STA $47+03.33$
$E L E V_{\text {HP }}=844.48+3.00(3.3333)-0.45(3.3333)^{2}=849.48{ }^{\prime}$
Check table to see if the computed elevation is reasonable!

Unequal-Tangent Parabolic Curve

Solution:

Solution (continued):

Solution (continued):

Computation of values for $\mathrm{g}_{1} \mathrm{x}$ and $\mathrm{g}_{2} \mathrm{x}$

	STATION	$\underline{\mathbf{x}}$	$\mathrm{g}_{1} \mathrm{x}$	(r/2) x^{2}	Curve Elevation
BVC	$83+00$	0	0	0	751.24'
	$84+00$	1	-2.00		
	$85+00$	2			
	$86+00$	3			
CVC	$87+00$	4			747.56'
	$88+00$	1	0.16		
	$89+00$	2			
	$90+00$	3			
	$91+00$	4			
	$92+00$	5			
EVC	$93+00$	6			
			$\mathrm{g}_{1} \mathrm{x}=$	-2 (1) =	-2.00
			$\mathrm{g}_{2} \mathrm{x}=$	$.16(1)=$	0.16

Computation of values for $\left(r_{1} / 2\right) x^{2}$ and $\left(r_{2} / 2\right) x^{2}$

	STATION	$\underline{\text { x }}$	$\underline{\mathbf{G}_{1} \mathbf{x}}$	$(r / 2) x^{2}$	Curve Elevation
BVC	$83+00$	0	0	0	751.24'
	$84+00$	1	-2.00	0.27	
	$85+00$	2	-4.00		
	$86+00$	3	-6.00		
CVC	$87+00$	4	-8.00		747.56'
	$88+00$	1	0.16	0.12	
	$89+00$	2	0.32		
	$90+00$	3	0.48		
	$91+00$	4	0.64		
	$92+00$	5	0.80		
EVC	$93+00$	6	0.96		
				$\left(r_{1} / 2\right) \mathrm{x}^{2}$	$=(0.27)(1)^{2}=0.27$
				$\left(r_{2} / 2\right) x^{2}$	$=(0.12)(1)^{2}=0.12$

Elevation Computations for both Vertical Curves

	STATION	$\underline{\text { x }}$	$\underline{g_{1} x}$	$(\mathrm{r} / 2) \mathrm{x}^{2}$	Curve Elevation
BVC	$83+00$	0	0	0	751.24'
	$84+00$	1	-2.00	0.27	
	$85+00$	2	-4.00	1.08	
	$86+00$	3	-6.00	2.43	
CVC	$87+00$	4	-8.00	4.32	747.56'
	$88+00$	1	0.16	0.12	
	$89+00$	2	0.32	0.48	
	$90+00$	3	0.48	1.08	
	$91+00$	4	0.64	1.92	
	$92+00$	5	0.80	3.00	
EVC	$93+00$	6	0.96	4.32	
$Y_{1}=751.24-2.00+0.27=749.51^{\prime}$					
$Y_{2}=747.56+0.16+0.12=747.84{ }^{\prime}$					

Computed Elevations for Stakeout at Full Stations

	STATION	\mathbf{x}	$\mathbf{g}_{1} \mathbf{x}$	$\left(\mathbf{r} / \mathbf{2)} \mathbf{x}^{\mathbf{2}}\right.$	Curve Elevation
BVC	$83+00$	0	0	0	751.24^{\prime}
	$84+00$	1	-2.00	0.27	749.51^{\prime}
	$85+00$	2	-4.00	1.08	748.32^{\prime}
CVC	$86+00$	3	-6.00	2.43	747.67^{\prime}
	$87+00$	4	-8.00	4.32	747.56^{\prime}
	$88+00$	1	0.16	0.12	747.84^{\prime}
	$89+00$	2	0.32	0.48	748.36^{\prime}
	$90+00$	3	0.48	1.08	749.12^{\prime}
	$91+00$	4	0.64	1.92	750.12
EVC	$92+00$	5	0.80	3.00	751.36^{\prime}
	$93+00$	6	0.96	4.32	752.84^{\prime}

Designing a Curve to Pass Through a Fixed Point

Figure 25-8 Designing a parabolic curve to pass through a fixed point.

Solution:

Figure 25-8 Designing a parabolic curve to pass through a fixed point.

Solution (continued):

$1271.20=\left[1261.50+4.00\left(\frac{L}{2}\right)\right]+\left[-4.00\left(\frac{L}{2}+1.5\right)\right]+\left[\frac{3.80+4.00}{2 L}\left(\frac{L}{2}+1.5\right)^{2}\right]$
$0.975 L^{2}-9.85 L+8.775=0$
$x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$
$a=0.975$
$b=-9.85$
$c=8.775$
$L=9.1152$ stations $=911.52^{\prime}$

Figure 25-8 Designing a parabolic curve to pass through a fixed point.

Sight Distance

- Defined as "the distance required, for a given design speed to safely stop a vehicle thus avoiding a collision with an unexpected stationary object in the roadway ahead" by AASHTO (American Association of State Highway and Transportation Officials)
- Types
- Stopping Sight Distance
- Passing Sight Distance
- Decision Sight Distance
- Horizontal Sight Distance

Sight Distance Equations

$$
\begin{aligned}
& \text { For Sag Curves } \\
& S \leq L \\
& L=\frac{S^{2}\left(g_{2}-g_{1}\right)}{4+3.5 S} \\
& S \geq L \\
& L=2 S-\frac{4+3.5 S}{g_{1}-g_{2}}
\end{aligned}
$$

