

Photocalorimetry: Validation Methods

Andy Morris, Medway Sciences, University of Greenwich at Medway

Outline of Talk

- Background to Photocalorimetry Project
- Instrument Design
- Validation Techniques & Actinometry
 - 2-NB
 - Ferrioxalate
 - Spectroradiometry
- Conclusions & Future Work
- Applications to solids

Photocalorimetry

 A new area of interest - small amount of previous work (virtually nothing written about the solid state)

Many benefits:

 Rapid analysis - conventional storage testing takes many weeks, calorimetric technique can be done in hours

- Conventional testing is costly
- Sensitive analysis heat changes in the µW range detected
- Apparatus enables testing in both the solid and solution phases
- Can apply data to calorimetric equations for analysis
- Simple experimental setup...

Photocalorimetry – apparatus

Photocalorimetry - Validation

- Apparatus has been developed previously (Lehto et al.)
- First need to establish a validation method (*cf* triacetin reaction)
 - *i.e.* a system that can be used as a chemical actinometer
- Systems well-known in the literature
 - Solids: nifedipine
 - Solutions: ferrioxalate (conventional)

2-nitrobenzaldehyde (2-NB) (novel)

- Initial work in solution phase simpler systems, in principle
- More complex validation systems will come later (e.g. solids)

Photocalorimetry - Actinometry

Chemical Actinometers

- A solution containing a chemical compound that undergoes a specific chemical reaction as a result of photon absorption
- Reaction Rate related to the rate at which photons are absorbed by the actinometer
- The actinometer solution is illuminated under the same conditions as the drug samples
- The reaction is followed as a function of illumination time

 \rightarrow Photon Flux \rightarrow Photon Flux (Wm⁻²)

Allows results to be compared quantitatively if a value of H is known....

Photocalorimetry - Actinometry

3 Systems to Compare:

- 2-nitrobenzaldehyde novel
- Potassium Ferrioxalate established
- Spectroradiometry (absolute method)

Photocalorimetric Calculations

 I_{o} is the irradiance

 k_0 is the reaction rate constant

 $\boldsymbol{\phi}$ is the quantum yield

and

 $F_o = I_o V.N_A E_{\lambda} / A$

 F_{o} is the photon flux V is the volume of solution

N_A is Avogadro's Number

 E_{λ} is the average light wavelength

A is the area of exposed solution

Photocalorimetric Calculations

 I_{o} is the irradiance

 k_0 is the reaction rate constant

 $\boldsymbol{\phi}$ is the quantum yield

and

 $F_o = I_o V.N_A E_{\lambda} / A$

\mathbf{F}_{o} is the photon flux

V is the volume of solution

N_A is Avogadro's Number

 E_{λ} is the average light wavelength

A is the area of exposed solution

Photocalorimetry - Calculations

For a zero order reaction:

$$\Phi = k_o HV$$

 \rightarrow a value of **k**_o which can be applied to $I_o = k_o/\phi$

- \rightarrow a value of I_o which can be applied to F_o = I_o.V.N_A.E_{λ} / A
- \rightarrow a quantitative value (in W / m²) for the photon flux of a light source

Photocalorimetry - Calculations

For a zero order reaction:

$$D = k_o HV$$
 (D) (from the TAM)

 \rightarrow a value of **k**_o which can be applied to **l**_o = k_o/ ϕ

- \rightarrow a value of **I**_o which can be applied to F_o = I_o.V.N_A.E_{λ} / A
- ightarrow a quantitative value for the photon flux of a light source

Photochemical rearrangement of 2-nitrobenzaldehyde to 2nitrosobenzoic acid and dissociation of the product yielding H⁺

• The quantum yield is 0.5

Reaction is zero-order (ie linear loss of 2-NB as a function of irradiation time)

GlaxoSmithKline

Enthaloy H can be easily determined (202.4 k.lmol⁻¹)

 Take measurement after same time has elapsed after light on for each experiment

 Experimental output should be a flat line at this point

Subtract blank from signal to get a value for *phi*

Experiment Number	Ф (M W)	H (Jmol ⁻¹)	V (dm³)	k (moldm ⁻³ s ⁻¹)
1	-	-	-	
2	110	202464	0.004	1.36 x 10 ⁻⁷
3	116	202464	0.004	1.46 x 10 ⁻⁷
4	114	202464	0.004	1.41 x 10 ⁻⁷
5	114	202464	0.004	1.41 x 10 ⁻⁷

*I*₀:

1.1 *Wm*⁻² 4.2 x 10⁻⁷ einstein dm⁻³ s⁻¹

Photocalorimetry - Studies with Ferrioxalate

Traditional chemical actinometer

• $2[Fe(C_2O_4)_3]^3 \rightarrow 2Fe(C_2O_4)^2 + 2CO_2$

Many advantages over 2-NB:

- 1. Sensitivity
- 2. Wavelength Coverage
- 3. Photolyte stability and Photolysis Products
- 4. Simplicity of operation
- 5. Has a known enthalpy

Highly regarded and widely used

Adopt the same principles for calculation as before....

Photocalorimetry - Studies with Ferrioxalate

Experiment Number	Ф (M W)	H (Jmol ⁻¹)	V (dm³)	k (moldm⁻³s⁻¹)
1	315	52600	0.004	1.44 x 10 ⁻⁶
2	408	52600	0.004	1.36 x 10 ⁻⁶
3	294	52600	0.004	1.40 x 10⁻ ⁶
4	286	52600	0.004	1.94 x 10 ⁻⁶
5	303	52600	0.004	1.50 x 10⁻ ⁶

*I*₀:

4.8 *Wm*-2

1.9 x 10⁻⁶ einstein dm⁻³ s⁻¹

Photocalorimetry - Spectroradiometry

Spectroradiometers can record irradiance data in real-time

 Available software allows measurement to be carried out directly in Wm⁻²

Can connect to the third trifurcated cable on the apparatus

No chemical method required

Photocalorimetry - Spectroradiometry

Photocalorimetry - Spectroradiometry

Lamp Output (<i>W</i>)	Photon Flux <i>(W/m²)</i>
240	2.4
270	4.0
300	7.0

Comparing actinometric methods

Method	Mean Photon Flux, <i>F_o</i> <i>(W/m²)</i>
2-NB (240W)	1.100
Spectroradiometry (240W)	2.365
Potassium ferrioxalate (300W)	4.800
Spectroradiometry (300W)	6.954

Book value of $F_o = 1.3 W/m^2$

Comparing actinometric methods

The values obtained by the two chemical methods compare more favorably than the spectroradiometric method

2-NB is more favorable than potassium ferrioxalate

- Steadier calorimetric output (i.e. flat line produced)
- Easier to prepare and has a longer shelf life

 Interesting that *potassium ferrioxalate* is the IUPAC recommended method

 Investigations into why spectroradiometry is inaccurate need to be carried out

3. Application to Solids

Nifedipine under white light

- No quantitative data recorded for solid state photocalorimetric experiments
- Use *nifedipine* since it is well-known in the literature
- Apparent first-order kinetics should be easy to spot experimentally
- Acts as a good "test" reaction before moving onto studies involving individual wavelengths of light
- Apply the same rules of analysis as used for 2-NB and Potassium Ferrioxalate
- Talc is used as the reference material

Experiment No	Literature Rate Constant (s ⁻¹)	Experimental Rate Constant (s ⁻¹)
1	7.47 x 10⁻⁵	5.79 x 10⁻⁵
2	7.28 x 10 ⁻⁵	9.15 x 10⁻⁵
3	7.19 x 10 ⁻⁵	9.14 x 10 ⁻⁵
4	7.27 x 10⁻⁵	4.50 x 10⁻⁵

% error = 2.2 for the first 4000 seconds of reaction

Important since nifedipine photodegradation is complex

3. Application to Solids

Nifedipine under monochromatic light

- Limited data recorded for solid state photocalorimetric experiments
- Compare with work done by Lehto et al.
 - Reported nifedipine sensitivity at 510nm to 280nm with a maximum at 390nm
- Use nifedipine since it is well-known in the literature
- Wavelength range from 520nm to 300nm
- Scan rate of 10nm / hour
- Use talc as reference material

Conclusions and Future Work

Photocalorimeter designed and built successfully

• 2 main options exist for actinometer selection in solution phase

2-NB v Potassium Ferrioxalate

 2-NB is more stable; easier to prepare and has a simple calorimetric output

 Nifedipine is a suitable validation material - first quantitative measurements presented here

Complexity is a problem after 4000 s - Use of Chemometrics

Investigations into effect of wavelength on nifedipine were successful.
Further work will investigate the effect of moisture, temperature etc on calorimetric output at different wavelengths

Acknowledgements

- Professor Anthony Beezer
- Professor Joseph Connor
- David Clapham, GSK
- Medway Sciences colleagues

