POLÝPLOIDÝ PLANT BREEDING IN ALLOPOLÝPLOID

PRAKASH.A.R 2017601603 1M.SC(PGR)

DEFINE

Polyploids are organisms with multiple sets of chromosomes in excess of the diploid number (Acquaah, 2007; Chen, 2010; Comai, 2005; Ramsey and Schemske, 1998).

- Polyploidy is common in nature and provides a major mechanism for adaptation and speciation.
- Approximately 50-70% of angiosperms, which include many crop plants, have undergone polyploidy during their evolutionary process (Chen et al., 2007)

Flowering plants form polyploids at a significantly high frequency of 1 in every 100,000 plants (Comai, 2005)

EVOLULATION OF POLYPLOID

Classification of ploidy

Based on their chromosomal composite

* Euploids

* Aneuploids.

Euploids constitute the majority of polyploids

Euploidy

Are polyploids with multiples of the complete set of

chromosomes specific to a species.

- Depending on the composition of the genome,
- Tetraploidy is the most common class of euploids (Comai, 2005)
- Euploids can be further classified into
- Autopolyploids
- * Allopolyploids

Natural autoploids include tetraploid crops such as alfafa, peanut, potato and coffee and triploid banana

ANEUPLOID

Are polyploids that contain either an addition or subtraction of one or more specific chromosome(s) to the total number of chromosomes that usually make up the ploidy of a species.

Term	Chromosome number	
Monosomy	<mark>2n-1</mark>	
Nullisomy	2n-2	
Trisomy	<mark>2n+2</mark>	
Tetrasomy	2n+2	
Pentasomy	2n+3	

Table 5.1: A list of major crops and their ploidy

Common name	Ploidy	Name	Propagation	
Maize	2x=20	Diploid	Outcrossing	
Wheat	6x=42	Hexaploid	Outcrossing	
Rice	2x=24	Diploid	Selfing	
Potatoes	4x=48	Tetraploid	Outcrossing; Vegetative	
Soybeans	2x=40	Diploid	Selfing	
Barley	2x=14	Diploid	Selfing	
Tomatoes	2x=24	Diploid	Selfing	
Bananas	3x=33	Triploid	Vegetative	
Watermelon	2x=22	Diploid	Outcrossing	
Sugarcane	8x=80	Octoploid	Outcrossing; vegetative	
Sugar beet	2x=18	Diploid	Outcrossing	
Cassava	2x=36	Diploid	Outcrossing; Vegetative	

Origin of Allopolyploidy

- The polyploids with chromosomes derived from different species are called allopolyploids
- The fusion of reduced 1n gamete with unreduced 2n gamete gives rise to 3n zygote followed by the subsequent fusion of 1n reduced gamete with 3n gamete in the next generation giving rise to a tetraploid individual.
- This two-step process of allopolyploid production is sometimes referred to as a triploid bridge.
- Environment and genotype have the influence on the formation of nonreduced gametes

The origin of allopolyploid from unreduced and reduced gametes (Source: Campbell's Biology, page 454, 5th Edition)

(i) Bread wheat (*Triticum aestivum*)

Evolution of bread wheat (*Triticum aestivum*) (*Source: http://www.ibri.org/Books/* Pun_Evolution/Figures/Fig03-12.gif

(ii) Tobacco (*Nicotiana tabacum*)

Evolution of Nicotiana tabacum

(iii) Cotton (Gossypium hirsutum)

X Gossynium ramondii
x oossyptum tumonum
American upland cotton
2n=26
(Large chromosomes)
l + 13 Large (26 univalents)
↓ 6 bivalents = 13 small+13 large) <i>n hirsutum</i> (New world Cotton)

Evolution of cotton (Gossypium hirsutum)

(iv) Amphidiploid Brassica species

Brassica Triangle (Morinaga, 1934)

Economically important natural alloploid crops include strawberry, wheat, oat, upland cotton, oilseed rape, blueberry and mustard

Characteristics of Allopolyploids

- Larger cells
- Vigorous plant
- Less complex than autopolyploids
- Recessive characters may appear less
 frequent

(A) diploid (B) induced tetraploid

Applications of Allopolyploidy

- Bridge crossing
- Creation of new crop specie
- Widening the genetic base of existing allopolyploids

Advantages of polyploids

- Identify genetic origin of plant species
- Produce new plant genotypes and plant species
- Facilitate transfer of genes from related species
- Facilitate transfer of individual chromosomes or pairs of chromosomes

DISADVANTAGE

- The effects of allopolyploidy cannot be predicted
- Newly synthesized allopolyploids have many defects
- The synthetic allopolyploids have to be improved through extensive breeding at the polyploid level
- Only a small proportion of allopolyploids are promising

		Gametic ch.	
Scientific name	Common name	no.	Cultivated/wild
Avena strigosa	Sand oats	7	Wild
A. barbata	Slender wild oats	14	Wild
A. sativa	Cultivated oats	21	Cultivated
A. byzantine	Cultivated red oats	21	Cultivated
Brassica nigra	Black sarson	8 (B) ^a	Cultivated
B. oleracea	Cabbage, cauliflower, etc.	9 (C)	Cultivated
B. campestris	Turnip rape	10 (A)	Cultivated
B. carinata	Abyssinian cabbage	17	Wild
B. juncea	Rai, Indian mustard	18	Cultivated
B. napus	Rape	19	Cultivated
Gossypium arboreum	Asiatic (desi) cotton	13 (A ₂)	Cultivated
G. herbaceum	Asiatic cotton	13 (A ₁)	Cultivated
G. thurberi	Wild American cotton	13 (D ₁)	Wild
G. barbadense	Sea island (Egyptian) cotton	26 (A ₂ D ₂)	Cultivated
G. hirsutum	American upland cotton	26 (A ₁ D ₁)	Cultivated
Hordeum vulgare	Cultivated barley	7	Cultivated
H. jubatum	Squirrel tail barley	14	Wild
H. nodosum	Foxtail barley	21	Wild
Medicago hispida	California burclover	7	Cultivated
M. lupulina	Black medic	8, 16	Cultivated
M. falcate	Yellow alfalfa	8, 16	Cultivated
Nicotiana sylvestris	Wild tobacco	12	Wild
N. tomentosa	Wild tobacco	12	Wild
N. tabacum	Cultivated tobacco	24	Cultivated
N. rustica	Cultivated tobacco	24	Cultivated
N. bigelovii	Wild tobacco	24	Wild
N. debneyi	Wild tobacco	24	Wild
Prunus americana	American plum	8	Cultivated
P. avium	Sweet cherry	8	Cultivated
P. persica	Peach	8	Cultivated
P. cerasus	Sour cherry	16	Cultivated
P. domestica	European plum	16	Cultivated
Saccharum officinarum	Noble canes	40	Cultivated
S. barberi	Indian canes	41, 45, 46, 58, 62	Cultivated
S. sinensis	Indian canes	58, 59	Cultivated
S. spontaneum	Wild canes	20-64	Wild

Table 10.2 Some anopolypiou crop species and men gametic cinomosome i

(continued)

Table 10.2 (continued)

		Gametic ch.	
Scientific name	Common name	no.	Cultivated/wild
S. robustum	Wild canes	30-74	Wild
Sorghum versicolor	Wild sorghum	5	Wild
S. bicolor	Jowar	10	Cultivated
S. halepense	Johnson grass	20	Cultivated
Trifolium pratense	Red clover	7	Cultivated
T. alexandrinum	Berseem clover	8	Cultivated
T. repens	White clover	16	Cultivated
T. medium	Zigzag clover	40, 48, 42, 49	Cultivated
Triticcum monococcum	Wild einkorn	7 (A)	Wild
T. turgidum var. dicoccoides	Wild emmer	14 (AB)	Wild
T. turgidum var. dicoccum	Emmer wheat	14 (AB)	Cultivated
T. turgidum var. turgidum	Solid stem wheat	14 (AB)	Cultivated
T. turgidum var. carthlicum	Persian wheat	14 (AB)	Cultivated
T. turgidum var. polonicum	Polish wheat	14 (AB)	Cultivated
T. turgidum var. durum	Durum wheat	14 (AB)	Cultivated
T. timopheevii	-	14 (AG)	Cultivated
T. timopheevii var.	-	14 (AG)	Wild
americanum			
T. aestivum var. spelta	Spelt wheat	21 (ABD)	Cultivated
T. aestivum var. aestivum	Common bread wheat	21 (ABD)	Cultivated
T. aestivum var. macha	-	21 (ABD)	Wild
T. aestivum var. compactum	Club wheat	21 (ABD)	Cultivated
T. aestivum var.	Indian dwarf wheat	21 (ABD)	Wild
sphaerococcum			
T. zhukovskyi	-	21 (AAG)	Cultivated

Letters within parentheses denote the genomes present in the species Source: Singh BD (2012), Plant Breeding, Principles and Methods

References

 Ranney, Thomas G. Polyploidy: From Evolution to New Plant Development. Combined Proceedings International Plant Propagators' Society, Volume 56, 2006, pp.137-142.

http://www.ces.ncsu.edu/fletcher/mcilab /publications/ranney-2006.p

See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/313542013

THANK YOU