Chapter 4

Beam Deflections

This chapter will discuss various methods to determine the deflection and slope at
the specific points in determinate beam. The methods include the Double
Integration method and Macaulay method as well as Moment Area method.

After successfully completing this chapter you should be able to:

o Develop the general equation for the elastic curve of a deflected beam by
using double integration method and area-moment method.

o State the boundary conditions of a deflected beam

o Determine the deflections and slopes of elastic curves of simply supported

beams and cantilever beams.

4.1 Introduction

When a structure is placed under load it will bend, deflect or displace. The
deflection will depend on the following factors:

1. Geometry of the structure, including shape and flexural rigidity of
member.

2. Flexibility/rigidity of the material used.

3. Restraint of the supports.

4, Load pattern.

In the design of structures the primary requirement is to ensure that the structure
or structural component can adequately resist the loading to which it is being
subjected. This aspect of design is concerned with designing for strength.

However there are other aspects of design that are important, and in the case of
the design of beams another consideration is the value of the vertical deflections
that will occur when such beam is loaded. This chapter is intended as an
introduction to the analytical techniques used for calculating deflections in beams
and also for calculating the rotations at critical locations along the length of a
beam.

4.2  Deflection of Beams
The deformation of a beam is usually expressed in terms of its deflection from its

original unloaded position. The deflection is measured from the original neutral
surface of the beam to the neutral surface of the deformed beam. The

97




configuration assumed by the deformed neutral surface is known as the elastic
curve of the beam as shown in Figure 4.1.

. Elastic Curve
~ (Deformed shape)

Figure 4.1: Elastic curve

Numerous methods are available for the determination of beam deflections.
These methods include:

Double Integration Method

Moment Area Method

Strain Energy Method (Castigliano’s Theorem)
Conjugate Beam Method

Method of Superposition

abrwnE

Of these methods, the first two are the ones that are commonly used. Therefore,
this chapter will be only focus on the first two methods.

4.3 Double Integration Method

The Double Integration Method, also known as Macaulay’s Method is a powerful
tool in solving deflection and slope of a beam at any point because we will be

able to get the equation of the elastic curve.

In calculus, the radius of curvature of a curve y = f(X) is given by

14+ (dy /dr)? ::Uj
b= PR
f d2y/dz?

The radius of curvature of a beam is given as

_EI
P= M

Deflection of beams is so small, such that the slope of the elastic curve dy/dx is
very small, and squaring this expression the value becomes practically negligible,
hence
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Thus, EI/M=1/y"
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v 2y
Y SR T EI

If El is constant, the equation may be written as:

Ely" =M

where x and y are the coordinates shown in the Figure 4.1 of the elastic curve of
the beam under load, y is the deflection of the beam at any distance x. E is the
modulus of elasticity of the beam, | represent the moment of inertia about the
neutral axis, and M represents the bending moment at a distance x from the end
of the beam. The product El is called the flexural rigidity of the beam.

The first integration y' yields the slope of the elastic curve and the second
integration y” gives the deflection of the beam at any distance x. The resulting
solution must contain two constants of integration since El y" = M is of second
order. These two constants must be evaluated from known conditions concerning
the slope deflection at certain points of the beam. For instance, in the case of a
simply supported beam with rigid supports, at x = 0 and x = L, the deflectiony =0,
and in locating the point of maximum deflection, we simply set the slope of the
elastic curve y' to zero.

4.3.1 Boundary Conditions
dy

Generally, the deflections is known as y-values and slopes is known as i The
X
values are called boundary conditions, which normally are:
1. For simply supported beams:
® At the x-values of the two supports, deflection is zero, i.e. y =
0.
(i) If the point (i.e. the x-value) of maximum deflection is known,
then at the x-value of the point, the slope is zero, i.e. % =0.
X
2. For cantilever beams, at the x-value of the built-in end:
(1) The deflection is zero, i.e. y = 0.
(i) The slope is zero, i.e. ? =0.
X
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Example 4.1

Determine the maximum deflection & in a simply supported beam of length L
carrying a concentrated load P at midspan.

Solution:

Ely" = ;Pr— Plr— L)

Iy = {Pat - Pl 4024

Ely=5Prt — tPlr— L) 4 Cur + Cy

12

Atx =0,y =0, therefore, C, =0

0=4PL*— IP(L—iL +C\L

0= PLY— LPL* + C\L

Ely=Prt — tPlr— 3L)* — =PLr

Maximum deflection will occur at x =% L (midspan)
Elynas = 5 P3P — EP(3L — L) — L PE2(3L)
E fhnor = g5 PL* — 0 — 5 PL?

PL?
CARE]

Wmopr =
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The negative sign indicates that the deflection is below the undeformed neutral
axis.

Therefore,

rL?

Sinore =
T ﬂbf

Example 4.2

Find the equation of the elastic curve for the cantilever beam shown in Fig. E4.2;
it carries a load that varies from zero at the wall to w, at the free end. Take the
origin at the wall.

Figure E4.2
Solution: C11/3x
V' = %ul,,.L
M = zw,L(3L)
M = zw,L?

By ratio and proportion

uty,

T
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Ely"=-M+Vz— F(3x)

Ely"=—tw,L? 4+ lw, Le— Lr (%JJ)

Ely" = _% HIEL . %J-ﬂ

Ely = — m;j} . w;L 2 ?r:}d Ao
Ely=— HIIE;LE 4+ H;_'j.r"g - I;{L " 4 Char +Co

Atx =0,y =0, therefore C; =0
Atx =0,y =0, therefore C, =0

Therefore, the equation of the elastic curve is

_ wol? 5 w,L e
Ely=-— & - —

Y e Lt T 1L
Example 4.3

Compute the value of El & at midspan for the beam loaded as shown in Fig. E4.3.
If E = 10 GPa, what value of | is required to limit the midspan deflection to 1/360

of the span?

300 N/m

YYVYVVYFVYYVYYVYY

<—— 2 m

»e—— 2 M —)1

Ry

Ry
Figure E4.3
Solution:
< X
300 N/m

Yy vV YVYYVYVYVN ]
R; =450 N
< 2m *>I< 2m
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YMps =10

4R = 300(2)(3)

R =45 N

YMp =10

4Rs = 300(2)(1)

s = 150N

Ely" = 450x — 1(300)2% + 2(300){ x — 2)?
Ely" = 4500 — 15002 + 150( x — 22

Ely = 225:% — 500* +50(x — 2)% + )
Ely="T5r% 125" +125{ - 2)' + Cro + s
Atx =0,y =0, therefore C, =0
Atx=4m,y=0

0 =T75(4%) — 12.5(4") + 12.5(4 — 2)* +4Cy

(' = —450N - m?

Therefore,

Ely="T5% —1252* 4+ 125{ x — 2)* —450x

At X =2 m (midspan)

ET Ymidspan = T5(2%) — 12.5(2%) +12.5(2 — 2)* — 450(2)
ElYmidepon = —H0N - m?

ET 8 midepan = 500 N - m?

Maximum midspan deflection

. — 1 — 1 4y — 1
ﬁ'.'.ll.'l.l:.“}.’u‘“ - mi- — m{-f] = oo 1
— 100
ﬁ'.'.lljl.l:.“]!.’ll‘“ - m 1
Thus,

100007 (129} = 500(1000%)
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I = 4500 000 mm? or

I =45 % 105 mm?t

Example 4.4

For the beam loaded as shown in Fig. E4.4, determine (a) the deflection and
slope under the load P and (b) the maximum deflection between the supports.

Solution:
EMpa =10
alt; = bP
= :—:P
BEMp =0
afls = PL
s = £I’

v

e

|‘ a 'I: b
7
& &
Figure E4.4
X
a < b

|
(

L)~

T

R

-

(b/a) P
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b L
} . _ D F IR
Ely HIJ-I—HI (r—a)

. b ; L .
Ely = _Em--’ +o-Ple—a ) 4+ Ch

f . L .
Ely= —,;I’J"i +—P{r— ﬂ}‘i + T +Cs
(i (i

Atx =0,y =0, therefore C, =0
Atx=a,y=0

0=-[b/(6a)]Pa®+aC;
C; = (ab/6)P
Therefore,

f . L . ab
" F_ y T 3. 2 3
Ely ?ﬂf.l +?ﬂf (r—a)”+ ﬂf

b . L . ah
Ely=——Ps* + —P(x— —Pz
y=—gabr + P le—a)®+ 5

Part (a): Slope and deflection under the load P

Slope under the load P: (notex=a+b=L)

r:+|'.le +-r1f_|'.ljj

b .
. P L 9
Ely = —?”I’{ﬂ + b

ab® + b I ab

b . .
o ) ,
Ely = ——?ﬂi’{a + Zab +b7) + o J+_fj P
. ,__m’; , X & J E JI'J"E J ab J
Ely = —I Wre— er-I_QI_QnI_‘__ﬁI

Ely = —3?P— fabP

Ely' = —:b(3b+ 2a)P

Ely' = —ib[2(a+b)+b]P

Ely' = —3b(2L + b)P

Deflection under the load P: (notex=a+b=1L)

Ely=-—=- p(nm +“+'r’p(r “'r’p(am
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al? + b ! ab

t : : . .
Ely=——P(a* + 3%+ 3ab? + ") + ————P + —P(a+b)
(e (e i

a’h ab® b bt b bt a’h ab®
Ely=——p__—_p__ p__py_py_py_ "py___ p
Y 0 2 2 (hz + {3 + (hx + ( + {3

Ely=—zab?P — P
Ely=— %{a +h P
Ely=—zLi*P

Part (b): Maximum deflection between the supports

The maximum deflection between the supports will occur at the point
where y' = 0.

: b L , ab
Ely = _Em--’ +o-Ple—a o+ o7

Aty =0, ( x-a) do not exist thus,

b . ab
0=——Prs?+2p
2w TS
J'! == %ﬂ!
N |
I = ?;—;(I
— 1
At L= ?1_—34'11
Fli — LIJ A ]434_@1.1 L )
:r,il'.'.lIIJ.J' - f_II(I {'u"ﬁ” ﬁ {ﬁ'ﬂ
ﬁ,j :i"‘l,””“_ _ (I!f..' J ﬂjf..' "

— P+
6(3+/3) 63

o
a-h 1
L.I'i'.'.llur = r _‘_+1
" 6v/3 ( 3 )

2
ah ,

&
bj * Trax - 'I ¢:
" 6v/3 (i)

2
o’
Elynar = 5 7=P
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Example 4.5

Determine the value of Ely midway between the supports for the beam loaded as

shown in Fig. E4.5.

200 N/m

M = 1800 N-m

S
ot b
2m 2m 2m 2m

Figure E4.5

Solution:

< X >
200 N/m
M = 1800 N-m ']

‘__.‘. ----- VN XYYV VYVYIVY
— = J

< \:’l(— E— )1« >
2m 2m 2m 2m

R; =300 N R; =500N

Y Mgz =0
GFy 4 200(4)(0) = 1800

Ry = 300N

S Mg =0

GFa + 1800 = 200(4)(6)

Ry = 500N

ETy" =300x — 1800 (o — 2)0 4500 (& —6) — 2(200) {x — 4)°
Ely" = 3000 — 1800 (x — 2)° + 500 (x — 6) — 100 {x — 4)°

Ely = 1500 — 1800 (& — 2) + 250 (o — 6)2 — 22 (o — 4 + 4
Ely =50 =900 (x —2)2+ 22 (r —6)°* - 2 (x — ' + Crx + O

Atx =0,y =0, therefore C, =0
Atx=6m,y=0

0 = 50(6°) - 900(4?) - (25/3)(2*%) + 6C;
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Cy = 5600/9 N-m°
Therefore,
Ely=>50r% —000 (x —2)2 4+ 20 (r — 6)% - 3 (o — 4 X0y

Atx=3m

ETy=>50(3%) — 000(1%) + 2003)

Ely=50N. m’

4.4 Moment Diagrams by Parts
The moment-area method of finding the deflection of a beam will demand the
accurate computation of the area of a moment diagram, as well as the moment of
such area about any axis. To pave its way, this section will deal on how to draw
moment diagrams by parts and to calculate the moment of such diagrams about
a specified axis.
4.4.1 Basic Principles
1. The bending moment caused by all forces to the left or to the right of any
section is equal to the respective algebraic sum of the bending moments
at that section caused by each load acting separately.
M= (M), =(EM)x
2. The moment of a load about a specified axis is always defined by the
equation of a spandrel
y — A;J.'H

where n is the degree of power of x.

The graph of the above equation is as shown below

Area and centroid of moment
diagram (spandrel)
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4.4.2

and the area and location of centroid are defined as follows.

Cantilever Loadings

A = area of moment diagram

M, = moment about a section of distance X

barred x = location of centoid

Degree = degree power of the moment diagram

Couple or Moment Load
A=-CL
M, =-0C

I

_]L

-3

Degree: zero

Concentrated Load
A= —3PL?
M, = —-Pr

I

|
=1L

Degree: first

Uniformly Distributed Load
A= —fuw,L?

M, = —%-u.l,,.rz

F=1L

Degree: second

A

A

YVYVYVYVYVYY

N

A

A

A

-2 wol?
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Uniformly Varying Load

A= —Fw,L?
“wo 4
M, = — =22
6L~
Y

Degree: third

-1/6 w2

Example 4.6

For the beam loaded as shown in Fig. E4.6, compute the moment of area of the
M diagrams between the reactions about both the left and the right reaction.

1000 N

Figure E4.6

Solution:

EMpa =10

(F = 400 + 1000(2)

Ry =400 N

EMp =0

(fa + 400 = 1000(2)

o = GO0 N

Moment diagram by parts can be drawn in different ways; three are shown below.
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1st Solution:

1000 N
M = 400 N-m
A 2in N 2'm Y 2m B
[ 1 & ]
R; = 400 N R, = 600 N
P ) «—- 83 —>
2400 N-m
800 N-m
®
®
1
‘ ®
-2000 N-m
ic— 4/3 >|< 14/3 >
e—— 8/3 - >L7 — 10/3 ———>

(Arearn)Xa = HDE00)() + H(H)(2400)(12) - 42)(2000)(3)
(Areaap)Xa =11733.33 N - w®
(Areanp)Xp = $(2)(800)(5) + 3(4)(2400)(3) — 3(2)(2000)(3)

{A‘J“Fﬂﬂ;_;:l j:_;_r = DRG6.06T N - 111"-5

2nd Solution:
1000 N
M = 400 N-m
A 2m g~ 2m ' 2m B
[ 1 & 1
A N J
Ry =400 N R, = 600 N
1im 5m
< >
400 N-m
®
3600 N-m <« 4m —>
@\\

-4000 N-m |
: > =S

< i
S 43m 14/3 m
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(Areaap)Xa =400(2)(1) + 3(6)(3600)(2) — 3(4)(4000)(5)
(Areaap) X4 =11733.33 N - w?
(Areaap)Xp = 400(2)(5) + 3(6)(3600)(4) — 3(4)(4000)( %)

(Areaap)Xp = 9866.6T N - m?

Example 4.7

For the beam loaded as shown in Fig. E4.7, compute the moment of area of the
M diagrams between the reactions about both the left and the right reaction. (Hint:
Draw the moment diagram by parts from right to left.)

500 N

\<— 2m — 2~ 1m—><¢—1m
400 N/m Y

YV YV YV VYV YVYYVYYVYYVYYVYYYY

Al ] B
i
Figure E4.7
Figure P-625 -
Rl RZ
¥Mpa =0

4R, = 400(3)(2.5) + 500(2)
Ry = 1000 N

N My =0

4Ry = 400(3)(1.5) + 500(2)

Ha = TN
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500 N

€«—— 2 m »Mc-1m >—-1m

400 N/m y
l 1)
\VVVW\V!(\YV:VVVVV\VVW\YVVV.\V B
I i
R1=1000N R2=700N
«— 4/3m — —— 8/3m >
2800 N-m
® \\\
®
-1000 N-m
>
2/3m 4/3m

— 2™ degree

-1800 N-m

-

3/4m 9/4m

(Areaap) Xa = (4)(2800)( 5) — 3(2)(1000)(F) — 3(3)(1800)(3)
(Areaap) X4 ==5450 N - m?
(Areanp) Xp = 7(4)(2800)(3) — 3(2)(1000)(5) — 3(3)(1800)(F)

(Areaap) Xp ==0550N - m?
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45 Area-Moment Method

Another method of determining the slopes and deflections in beams is the area-
moment method, which involves the area of the moment diagram.

Any loading

il ITE T

Moment Diagram

4.5.1 Theorems of Area-Moment Method
Theorem I:
The change in slope between the tangents drawn to the elastic curve at any two

points A and B is equal to the product of 1/EI multiplied by the area of the
moment diagram between these two points.

1
Hap = E{AI eaAR)

Theorem II:

The deviation of any point B relative to the tangent drawn to the elastic curve at
any other point A, in a direction perpendicular to the original position of the beam,
is equal to the product of 1/EI multiplied by the moment of an area about B of that
part of the moment diagram between points A and B.

1 _
tpia = E{Al‘fﬂmﬂ - Xp
and

1 _
tam = E{Al‘fﬂmﬂ - Xa
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Rules of Sign:

\é‘ B \ﬁ_ -
’ g | By . e .
T 6 (+) M“'“a.j tyya (+)

= i -
A B A B

1. The deviation at any point is positive if the point lies above the tangent,

negative if the point is below the tangent.

2. Measured from left tangent, if 8 is counterclockwise, the change of slope is

positive, negative if 0 is clockwise.

Example 4.8

The cantilever beam shown in Fig. E4.8 has a rectangular cross-section 50 mm
wide by h mm high. Find the height h if the maximum deflection is not to exceed

10 mm. Use E = 10 GPa.

4 kN 2 kN
l 2m 1 2m
Figure E4.8
Solution:
4 kN 2 kN
1 2m J 2m
1—A| Zoe |

—4 kN-m

—16 kN-m
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1 _
taip = E{AW'“J‘IH] Xa

1 .
—10= =7 [-%{9]{4](%]— 1(4)(16)(£) ]| (1000")
unm( D )
3 206
—10= ———— | —=— | (1000*
125 000A? [ 3 }{ )
5 —296(1000")
~125000(—10)
= GLE.67 mun
Example 4.9

For the cantilever beam shown in Fig. E4.9, what is the force (P) will cause zero
deflection at A?

M = 400 N-m

P Figure E 4.9
Solution:
M = 400 N-m
2m AN 2m C
Ai. - e ~—
Wi G
B A
P f
I
«—— 8/3m —;’l/ 4p
/ 0
? -400 N-m
€ 3m ){
! (Aree 1X4a=0
I, Tag)da =
1 - ] 3 -
L APYWEY — N4 : =
F7l 2(P)(3) — 2(400)(3) ] = 0
P=1125 N
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Example 4.10

Compute the deflection and slope at a section 3 m from the wall for the beam
shown in Figure E4.10. Assume that E = 10 GPa and | = 30 x 10° mm*.

1200 N/m

4m
Figure E4.10

Solution:

R = 3(4)(1200)

=240 N

M = 1(4)(1200)( §)

M=040MN-m

1200 N/m

7200 N-m

-6400 N-m

-1350 N-m

y=900N/m

1 _
tirja = E(A'PFHAHII Xp
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1, _
tija = 571 3(3)(7200) (1) — 3(6400)(1.5) — §(3)(1350)(0.6) ]

1 _ N
tpia = [ —18607.5 ](1000°
B/ 10000(30 < 108) - 7:5 (10007

tga = —62.025 mm

Therefore:

dp = 62,025 mmn

1
Hap = H{AW'HAH]

1, _
Bap = E_%{:ﬂ{?:rnm — 3(6400) — 1(3)(1350) |

Bap = 313.75 % 1077 radian

Bap = L1798 x 107" degree

4.6 Deflections in Simply Supported Beams Using Area-Moment Method

The deflection & at some point B of a simply supported beam can be obtained by
the following steps.

Load

A T

Geometry of area-moment method for finding
deformation & in simply supported beam

1 _
t-,- —_ A..__ . ;{-
1. Compute "0/ = FpiAreaac) Xe

1 _
tpig = — A..__ ,.{
2. Compute " 57\ Areaas) Xp

3. Solve & by ratio and proportion (see figure above).
+laa loga
r L
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Example 4.11

Compute the midspan value of EId for the beam shown in Fig. E4.11. (Hint: Draw
the M diagram by parts, starting from midspan toward the ends. Also take
advantage of symmetry to note that the tangent drawn to the elastic curve at

midspan is
600 N/m 600 N/m
|
YYVYVVYVYVYVYYYVYY YYVYYYYYYYYYYY
A .
2m 1m 2m
Rl R_,
Figure E4.11
Solution:
By symmetry:
fy = o =600(2) = 1200 N
600 N/m
Ar LA A ylrr LA 4 AARE Wy
r A"AAA.\.LAAA —
tNB \ A /
l 1l
R; = 1200 N 600 N/m R, = 1200 N
¢ 2.5m —>
«— 2m —
< 19/8 ——
2™ degree — |4 75 N'm
s
e 3000 N-m
-1875 N-m
«— 15/8

1 _
tqm = —(Are Y
A/ B b’f( reaap) Xa
. B 1.
‘AlB = Byl
, _335{]
‘AR T Ty

From the figure,

horizontal.)
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{‘J"n'.ll idspan — t..-"l..." H
Thus

LI ﬁ'n'.ll jl.l:.“:Fn'IL'H = :{irﬂl N - I-lrg

Example 4.12

A simple beam supports a concentrated load placed anywhere on the span, as
shown in Fig. E4.12. Measuring x from A, show that the maximum deflection
occurs at x = \[(L? - b?)/3].

P

a 1 b

A I IC
B
L
Ry : R;

Figure E4.12
Solution:
S M = 0 P
LIy = Pb I‘ Mg ¥ ‘ .

D C
W/ — B 4=
Ry, = Pb/L W f T~~~ B | |
S Mp1 =0 < S T ’I
Ry = Pb/L R; = Pa/L
Lty = Pa
‘RiL = (Pb/L)L = Pb
Rs = PajL
v_ Db
r L y
3 —_— iﬁl -
|.il - L J
tarp = —(Areaap) X
AL = H{ reaan) g Pb
1., 5

fajn = E_EJ':U{EJ'_
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1,
fa/m = 7 30y

1 [, ,/Pb
t."'l..."” - H 3.!" TJ'

. . LI’I’J ,
APTRT AL
berp = —(Areacn) X
Uafl vl El PeEe ) A
1. , . .
tf',"” - H_%{L — J'\]']{:IJF-' _'i',-l’l] + %{L - J']_]:i‘j - %Ijlrf; ]
1 . Ph . Ph .
toin = I -%{L—J'\]' (I’I’J— TJ) -I—%{L— r)- (TJ) - %I’I’Ii]
_1-].1 2 L 1 aa L 1 rapa
tf',."” == H _ﬁj rJ{L — J:I (1— I) + ﬁj FJ{L— J:I (I) — ﬁj ff]
1 [Pb . Pb . Py
i = —— | (L — ) 2L
G R _fiL{ o g b= =g ]

From the figure:

tayp =1torn

1Py, 1 [P . Ph , Py
| L P (L — )P —
EI3L” —EI |ogp o toplb—afe——
Pho, Ph . Pb a Py
= (L — ) b (L — ) —

A T AR A A

28 (Lo (L)
L L L

— K

20 = (L — )® + 3(L — )% — LI
20 = (L% — 3L% + 3La2 — %) + 3(L? — 2L + 12 — LI
2r® = L — 3L%r 4+ 3La? —a® + 3L%r — 6La? 4 30® — LIP
0=L3 - 3La? — LI

0=L%— 32 —

3t =L —

I|l' L*— ¥

YTV TS
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Tutorial Problems

P4.1 A simply supported beam is loaded as shown in Fig. P4.1. Determine the
Ely value of the beam at point C.

1.44 KNm L3 kN/m
A St vy vy B‘
C
A%aﬁm ! 0.8 m 1.2m 065?5
Figure P4.1
Answer: -461.33 Nm?®

P4.2 A simply supported beam, of diameter 12 mm, is loaded as shown in Fig.
P4.2. Using double integration method, determine the location of the
maximum deflection and magnitude of the deflection. Modulus of elasticity
is 200 GPa for the beam material.

20N 40 N/m
A Bl Cy v v v v D
| 0.2m ! 03m 0.4 m
Figure P4.2
Answer: -1.1263 mmat 0.9 m

P4.3 A cantilever beam AD carries a moment and a uniformly distributed load
as shown in Fig. P4.3. Determine the deflection at the free end A. Modulus
of elasticity is 200 GPa and | is 491 x 10® m* for the beam.

5 kN/m
A Cy v

Y y

whn
=
>
=
ANANN N R

02m ‘ 03m 0.5m

A T T

Figure P4.3
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Answer: 2.35 mm

P4.4 A cantilever beam is loaded as illustrated in Fig. P4.4. Determine the
deflection at the free end. E = 200 GPa, | = 2.5 x 10° m*.

TR,

3kN
6 kN Y 4 kN/m
m
/‘X \ Cy v v
B
| 0.2m ‘ 03m | 0.5m
Figure P4.4
Answer: 4.99 mm

123



