CARBENES

S.Keerthanan Bs-1121 EUSL

CARBENES

Introduction

• A carbene is a molecule containing

neutral carbon atom with a valence of two and two unshared valence electrons.

•Carbenes are uncharged, electron deficient molecular species that contain a divalent carbon atom surrounded by a sextet of electrons, and two substituents.

Types of Carbenes

- Carbenes are called singlet or triplet depending on the electronic spins they possess.
- Triplet carbenes are paramagnetic. The total spin of singlet carbenes is zero while that of triplet carbenes is one.
- Bond angles are 130-150° for triplet methylene and 100-110° for singlet methylene.
- Triplet carbenes are generally stable in the gaseous state, while singlet carbenes occur more often in aqueous media.

Structure and bonding

- Singlet carbenes are spin-paired. This molecule adopts an sp^2 hybrid structure.
 - Eg-:CH2 :CHPh :CHPh2 :CHR
- Triplet carbenes have two unpaired electrons.
- Most carbenes have a nonlinear triplet ground state, except for those with nitrogen, oxygen, or sulfur atoms, and halides directly bonded to the divalent carbon.
 - Eg:- :CCl2 :CHCl :C(OMe)2

- Singlet state: carbocation-like in nature, trigonal planar geometry, electrophiliccharacter. . Singlet carbenes generally participate in cheletropic reactions as either electrophiles or nucleophiles .
- Triplet state: diradical-like in nature, linear geomtry and participate in stepwise radical additions. Triplet carbenes have to go through an intermediate with two unpaired electrons whereas singlet carbene can react in a single concerted step.

Cont.....

- Metal carbene complexes have been classified into two broad classes:
 - "Fischer-type" and "Schrocktype".

Fischer Carbenes

- The Fischer-type carbene complexes are low-valent complexes stabilized by strong -accepting ligands (often CO).
- One or two heteroatoms (O, N, or S) are bonded to the carbine carbon atom and stabilize it by delocalizing the positive formal charge. The carbone is formally regarded as a neutral ligand.
- Accordingly, Fischer carbenes are relatively inert, but tend to react as electrophiles. In general, Fischer carbenes are 18 e–, coordinatively saturated complexes. Therefore, nucleophilic attack at the metal is not possible.

Schrock Carbenes

- The Schrock-type carbene complexes contain an early transition metal in a formal high oxidation state (often in the d0 electron configuration) stabilized by strong -donor ligands.
- Most of these complexes have an electron count below 18 and are, thus, coordinatively unsaturated.
- Therefore, nucleophilic attack at the metal is possible because of the electron deficiency.

Carbene Examples

Formation of carbenes

- Cabenes are formed by reactions of halogenated compounds with bases.
 - 1. α elimination of chloroform with base
 - 2. Thermal decomposition of diazo compounds
 - 3. Metal(Rhodium or copper catalysed decomposition of diazo carbonylcompound
 - 4. From tosylhydrazones

α-elimination of HX or X2 from an organic halide

- α elimination means the eliminations in which both the proton and the leaving group are located on the same atom.
- A strong base removes an acidic proton adjacent to an electron withdrawing group to give a carbanion.
- Loss of a leaving group from the carbanion creates a carbene.
- One of the best known elimination reactions occurs when chloroform is treated with base, forming a dichlorocarbene.
- The more common dehydrogenations (to form alkenes) are called beta(β) eliminations because the hydrogen and the halogen are lost from adjacent carbon atoms.

α-elimination of N2 from diazo-compounds

Carbene generation via α-elimination under mild nonbasic conditions:

• Thermolysis of sodium trichloroacetate:

$$Cl_3C \xrightarrow{O}_{O^-} Na^+ \xrightarrow{O}_{Na^+} CO_2 + NaCCl_3 \xrightarrow{-NaCl}_{-NaCl_2} :CCl_2$$

• The Simmons-SmithOffeaction: CH_2I_2 Zn/Cu OH CH_2I_2 CH_2

 $CH_2I_2 + Zn \longrightarrow :CH_2 + ZnI_2$

Formation of carbenes from tosylhydrazone

- Tosylhydrazone salts can react with metals to form metal carbenes and used in cyclopropanations and epoxidations.
- An example of a transition metal-catalyzed cyclopropanation is a synthesis of tranylcypromine, in which the sodium salt of benzaldehyde tosylhydrazone is converted to a rhodium metal carbene through the diazo intermediate.

Formation reactions of carbenes

a)
$$R_2C = N = N^{\stackrel{+}{\underset{A}{\longrightarrow}}} \xrightarrow{hv} R^{\stackrel{-}{\underset{B}{\longrightarrow}}} R^{\stackrel{-}{\underset{B}{\oplus}} R^{\stackrel{-}{\underset{B}{\bigoplus}} R^{\stackrel{-}{\underset{B}{\oplus}} R^{\stackrel{-}{\underset{B}{\bigoplus}} R^{\stackrel{-}{\underset{B}{\underset{B}{\bigoplus} R^{\stackrel{-}{\underset{B}{\oplus}} R^{\stackrel{-}{\underset{B}{\underset{B}{\underset{B}{\underset{B}{\bigoplus}} R^{\stackrel{-}{\underset{B}{\underset$$

Reactions of carbenes

- Carbenes are <u>highly electrophilic</u> species.
- Three major classes of carbene reactions.
- (1) Carbene insertions
- (2) Carbene additions
- (3) Carbene rearrangements

Insertion

$$A + B - C \rightarrow B - A - C$$

• Addition

Rearrangemei

Carbene.....

• Insertion

• Addition to multiple bonds

Rearrangement

1.Carbene insertions

- common type of carbene reactions.
- The order of preference is commonly:
 - 1. X–H bonds where X is not carbon
 - 2. C–H bond
 - 3. C–C bond.
- Insertions may or may not occur in single step.

- Carbocation usually react with the HOMO of a molecule.
- It will be much more selective about which HOMOs will do.
- For carbenes ,any HOMO will do a lone pair,a C=C or even a C-H bond.

Type of nucleophile

Method of insertion

• Simple C-H insertion:

- Carbenes can undergo insertion into a C-H bond.
- These insertion reactions create new bonds at completely unfunctionalized centres.

intramolecular insertion and inter molecular insertion

- Intramolecular insertion reactions present new synthetic solutions.
- When an intramolecular insertion is possible, no intermolecular insertions are seen.

Carbenes will also insert into other bonds

• Carbene insertion into an O-H bond Initial attack on the lone pair of hetero atom

• The mechanism involves addition of the oxygen lone pair into an empty p-orbital on the carbene, followed by proton transfer to generate a neutral molecule

Carbene insertion into an N-H bond - Merck industrial synthesis of a β -lactam antibiotic.

Carbapenani

A synthesis of the class of compound as carbapenam around a rhodium catalysed carbene insertion into a N-H bond.

2.Carbene addition

• The stereochemistry of carbene addition to alkenes can be used as a test of whether the carbene is reacting via the singlet or the triplet spin state:

Addition of singlet and triplet carbenes to alkenes.

- Singlet and triplet carbenes do not demonstrate the same reactivity
- Triplet carbenes should be considered to be <u>diradicals</u>, and participate in stepwise radical additions.
- Triplet carbenes have to go through an intermediate with two unpaired electrons whereas singlet carbene can react in a single concerted step.

Alkenes react with singlet carbene in a concerted fashion - alkene stereochemistry is preserved in the cyclopropane product:

Alkenes react with triplet (i.e. diradical) carbene in a **<u>stepwise</u>** fashion - the alkene stereochemistry is lost in the cyclopropane product:

Carbene additions to arenes: $6 \rightarrow 7$ ring-expansion to yield cycloheptatrienes:

- Step 1:
- The reaction mechanism of a Buchner ring expansion begins with carbene formation from ethyl-diazoacetate generated initially through photochemical or thermal reactions with extrusion of nitrogen.

• The generated carbene adds to one of the double bonds of benzene to form the cyclopropane ring.

3. Carbene rearrangement

• Wolff rearrangement

- The Wolff rearrangement is a reaction in organic chemistry in which an α-diazocarbonyl compound is converted into a ketene by loss of dinitrogen with accompanying 1,2-rearrangement.
- The Wolff rearrangement yields a ketene as an intermediate product, which can undergo nucleophilic attack with weakly acidic nucleophiles such as water, alcohols, and amines, to generate carboxylic acid derivatives
- The Wolff rearrangement can be induced via thermolysis, photolysis, or transition metal catalysis.

(1) Carbene Rearrangement

Mechanism: 1,2 migration of hydride or a carbanion:

Migratory aptitude: R = H >> aryl > alkyl

Arndt-eistert reaction

 One important application of this reaction is the chain extension of acyl chlorides to their homologous esters known as the arndt-eistert reaction.

