Practical No: 1

Design of Contour Bund

Aim: Design of contour bund

Theory:

The design parameters required for contour bunds are
(1) Vertical interval
(2) Horizontal interval
(3) Bund cross-section
(4) Earth work due to bunding

Height of the contour bund should be enough to store the expected peak runoff for a 10 years recurrence interval. A free board of about 20% should be provided for the settlement of height.
(1) Calculation of Vertical Interval (V.I) and Horizontal Interval (H.I)

For low rainfall areas

$$
\begin{gather*}
V I=0.15 \mathrm{~s}+0.6 \quad(\mathrm{~m}) \\
\text { and } \frac{s}{100}=\frac{V I}{H I} \\
\text { then, } H I=\frac{V I \times 100}{s} \tag{m}
\end{gather*}
$$

Where,
$\mathrm{VI}=$ Vertical interval, m
HI = Horizontal interval, m
$\mathrm{S}=$ Original land slope, \%
2) Calculation of Storage Required for Runoff Volume

$$
\begin{array}{ll}
P_{e}=P-I & (m) \\
A=H I \times L & \left(m^{2}\right)
\end{array}
$$

So, runoff volume to be stored $\left(R_{V}\right)$

$$
R_{V}=P_{e} \times A \quad\left(m^{3}\right)
$$

Where,
$\mathrm{P}=$ Precipitation, m
$P_{e}=$ Excess rainfall depth or surface runoff, m
I = infiltration depth, m
H.I = Horizontal interval, m
$\mathrm{L}=$ Length of bund behind which the runoff is stored, m
$\mathrm{A}=$ Area of watershed behind two bunds, m^{2}.
$R_{V}=$ Runoff volume to be stored, m^{3}.
(3) Calculation of Storage Volume

Fig. 1.1. Layout of contour bund. (Source: Das, 2002)
From the above layout of contour bund (Fig. 1.1),

$$
\begin{aligned}
& \text { Ponded area }\left(a_{1}\right)=\frac{1}{2} \times \frac{100 d}{s} \times d \quad\left(m^{2}\right) \\
& \text { Ponded area }\left(a_{2}\right)=\frac{1}{2} \times n d \times d \quad\left(m^{2}\right)
\end{aligned}
$$

$$
\text { Area of water stored behind the bund }=\left(a_{1}+a_{2}\right) \quad\left(m^{2}\right)
$$

Storage volume $\left(\mathrm{S}_{\mathrm{v}}\right)=$ area of water stored behind the bund \times length of bund $\left(\mathrm{m}^{3}\right)$ where,
d = depth of water stored behind the bund (m)
$\mathrm{n}: 1(\mathrm{H}: \mathrm{V})=$ side slope of the contour bund
4:1 ($\mathrm{H}: \mathrm{V}$) = Seepage line slope of the bund
(4) Calculation of Depth of Water Stored Behind Bund

For total runoff absorbed by the bund,
Runoff volume (Rv) = Storage volume $\left(\mathrm{S}_{\mathrm{v}}\right)$
Using this relationship, the depth of water stored behind bund is calculated.
(5) Calculation of Bund Cross Section

Total height of the bund $(H)=(d+20 \%$ of d as freeboard) $\quad(m)$
Base width $(B)=(n d+4 d)(m)$
Top width $(T)=(B-2 n H)(m)$
(6) Calculation of Earth Work due to Bunding

Lengh of contour bund per $h a(L)=\frac{10^{4}}{H I}$ for main bund

$$
=\frac{10^{4}}{H I} \times 1.3 \text { for main bund with side and lateral bund }
$$

Earthwork per ha $=$ cross sectional area of bund \times length per ha

$$
=\left[\frac{1}{2} \times(B+T) \times H\right] \times L \quad\left(\frac{m^{3}}{h a}\right)
$$

NUMERICAL:

Question
Calculate the height and cross sectional area of contour bund to be constructed on a land slope of 5%. The other details are given as under:
i) Rainfall excess for $24-\mathrm{hr}$ duration is 80 cm
ii) Horizontal interval $=15 \mathrm{~cm}$
iii) Depth of water flow over the weir $=30 \mathrm{~cm}$
2. Calculate the total length and earthwork of contour bund per hectare, which is constructed on 5% land slope. The bund spacing was maintained as 25 cm . the specification of bund is given as under:
i) Top width $=50 \mathrm{~cm}$
ii)Bottom width $=125 \mathrm{~cm}$
iii)Height=100cm
lateral and side bunds are also formed in field

