Compound Curve

Prof. Prafulla Kumar Panda
Centurion University of Technology and
Management
Contact:9438269572
E-mail: prafullapanda@cutm.ac.in

Shaping Lives...
Empowering Communities

A compound curve consist of 2 arcs of different radii bending in
the same direction and lying on the same side of their common
tangent. Then the center being on the same side of the curve.
$\mathrm{R}_{1}=$ Smaller radius
$\mathrm{R}_{2}=$ Larger radius
$\mathrm{T}_{\mathrm{S}}=$ smaller tangent length $=$ IT1
$\mathrm{Tl}=$ larger tangent length $=\mathrm{IT} 2$
$\Delta 1=$ deflection angle b / w common tangent and rear tangent
$\Delta 2=$ angle of deflection b / w common tangent and forward tangent
$\mathrm{D}=$ point of compound curvature MN
= common tangent

4 and $B I$ are two straights intersecting at I (P.I.). $T_{1} D T_{2}$ is the compound curve pasisting of two arcs of radii R_{1} and R_{2} (Fig. 1 , and D is the point of compound anature. $M N$ is the common tangent making deflection angles Δ_{1} and Δ_{2} at M $\operatorname{dd} N$.
so that $\quad \Delta=\Delta_{1}+\Delta_{2}$
fom the triangle $I M N$,

$$
\frac{I M}{\sin \Delta_{2}}=\frac{I N}{\sin \Delta_{1}}=\frac{M N}{\sin \left(180^{\circ}-\left(\Delta_{1}+\Delta_{2}\right)\right)}
$$

Hence,

$$
I M=\frac{M N \sin \Delta_{2}}{\sin \left(\Delta_{1}+\Delta_{0}\right)}
$$

$$
I M=\frac{M N \sin \Delta_{2}}{\sin \Delta}
$$

Also,

$$
\begin{aligned}
& I N=\frac{M N \sin \Delta_{1}}{\sin \left(\Delta_{1}+\Delta_{2}\right)} \\
& I N=\frac{M N \sin \Delta_{1}}{\sin \Delta}
\end{aligned}
$$

mon tangent MN

$$
\begin{aligned}
M D= & R_{1} \tan \frac{\Delta_{1}}{2} \\
D N= & R_{2} \tan \frac{\Delta_{2}}{2} \\
M N= & M D+D N \\
M N= & R_{1} \tan \frac{\Delta_{1}}{2} \\
& +R_{2} \tan \frac{\Delta_{2}}{2}
\end{aligned}
$$

Length of main tangents Π_{1} and Π_{2} :

$$
\begin{aligned}
\Pi_{1} & =T_{1} M+M I \\
& =R_{1} \tan \frac{\Delta_{1}}{2}+\frac{M N \sin \Delta_{2}}{\sin \Delta} \\
\Pi_{2} & =T_{2} N+N I \\
& =R_{2} \tan \frac{\Delta_{2}}{2}+\frac{M N \sin \Delta_{1}}{\sin \Delta}
\end{aligned}
$$

In total there are seven elements, viz. $\Delta_{1}, \Delta_{2}, \Delta, R_{1}, R_{2}, T_{2}$ and Π_{1}. If any fore of these elements are known (including at least one angle and at least two lenghs), be remaining three elements can be determined by applying the above equations.

A compound curve is normally set out by the method of deflection angles, using a theodolite (Fig $\quad 3$ The procedure for setting out a compound curve may be spit into office work and field work for the purpose of explanation.

Office work

1. Calculate all the seven elements of the curve.
2. Locate P.I. (I), P.C. $\left(T_{1}\right)$ and P.T. $\left(T_{2}\right)$.
3. Calculate the chainage of T_{1} (chainage of I - tangent length T_{2})
4. Calculate the chainage of the point of compound curvature D.

$$
\text { Chainage of } D=\text { chainage of } T_{1}+\text { length of arc } T_{1} D
$$

$$
=\text { chainage of } T_{1}+\frac{\pi R_{1} \Delta_{1}}{180^{\circ}}
$$

5. Calculate the chainage of $T_{2}=$ chainage of $D+\pi R_{2} \Delta_{2} / 180^{\circ}$
6. Calculate the deflection angles for both the arcs from their tangents eg $\Delta_{1}=\delta_{1}=1718.9 C_{1} / R$, where C_{1} is the chord length and R is the radius

Field work

Fig 3

1. Set up the theodolite at T_{1} and set out the first arc $T_{1} D$ by Rankine's method of deflection angles.
2. Shift the theodolite and set it up at point D.
3. Set the vernier A to read $\left(360^{\circ}-\Delta_{1} / 2\right)$, take a backsight on T_{1} and uras the telescopes. Swing the telescope by $\Delta_{1} / 2$ so that the telescope is directert along $D N$ and vernier A reads zero.
4. Now lay out the second are $D T_{2}$ in the same manner till T_{2} is reached.
5. Check the observation by measuring the ane to $\left(180^{\circ}-\left(\Delta_{1}+\Delta_{2}\right) / 2\right)$ or $\left(180^{\circ}-\Delta / 2\right)$.

Question:1
A compound curve , consisting of two simple circular curves of radii 350 m and 500 m , is to be laid out between two straights . The angles of intersection between the tangents and the two straights are 25° and 55°.Calculate the various elements of the d compound curve

Question-2

The centre line of a new railway line is to be set out along a valley. The first straight AI bears 75°, whilst the connecting straight IB bears 120°, Due to site condition it has been decided to join the straights compound curve.

The first curve of radius is commences at T1,Situated 300 m from I on straight AI, and deflects through an angle of 25° before joining $2^{\text {nd }}$ curve. calculate the radius of the $2^{\text {nd }}$ curve and distance of tangent point T_{2} from I on the straight IB.

$$
\begin{aligned}
& \Delta=120^{\circ}-75^{\circ}=45^{\circ} \\
& \Delta_{1}=25^{\circ}
\end{aligned}
$$

Hence,

$$
\Delta_{2}=20^{\circ}
$$

Tangent length $=M D=T_{1} M=R_{1} \tan \Delta_{1} / 2=500 \times \tan 12^{\circ} 30^{\prime}=110.8 \mathrm{~m}$. In triangle $M I N \angle N I M=180^{\circ}-\Delta=180^{\circ}-45^{\circ}=135^{\circ}$

Length $T_{1} I-T_{1} M=300-110.8=189.2 \mathrm{~m}$
Now,

$$
\begin{aligned}
M N & =\frac{I M \sin N I M}{\sin \Delta_{2}}=\frac{189.2 \times \sin 135^{\circ}}{\sin 20^{\circ}}=391.2 \mathrm{~m} \\
I N & =\frac{I M \sin \Delta_{1}}{\sin \Delta_{2}}=\frac{189.2 \times \sin 25^{\circ}}{\sin 20^{\circ}}=233.8 \mathrm{~m} \\
T_{2} N & =N D=M N-M D=M N-T_{1} M=391.2-110.8=280.4 \mathrm{~m} \\
T_{2} N & =R_{2} \tan \Delta_{2} / 2 \\
280.4 & =R_{2} \tan 10^{\circ} \\
R_{2} & =1590 \mathrm{~m} \\
I T_{2} & =I N+N T_{2}=233.8+280.4=514.2 \mathrm{~m}
\end{aligned}
$$

or

Fig-5

$$
\Rightarrow \quad R_{2}=1590 \mathrm{~m}
$$

Question no:3

Two tangents AB and BC intersect at B , another line DE intersect AB and BC at D and E such that angle $\mathrm{ADE}=150^{\circ}$ and angle $\mathrm{DEC}=140^{\circ}$. The radius of curve is 200 m and that of $2^{\text {nd }}$ is 300 m . Chainage of B is 950m.Calculate all data necessary for setting out the curve.
dainge of s is 950 m the cane.

$$
\begin{aligned}
& A_{1}=180^{\circ}-150^{\circ}=30^{\circ} \\
& \Delta_{2}=180^{\circ}-140^{\circ}=40^{\circ} \quad A=A_{1}+R_{2}=70^{\circ} \\
& \text { Q T1D } D=D T_{2}=R_{s} \tan \angle_{1}=200 \times \tan 15^{\circ}=53.58 \mathrm{~m} .
\end{aligned}
$$

$$
\text { (1) } T_{3} E=E T_{2}=m \tan A_{2}=300 \times \tan 20^{\circ}=109.19
$$

(3) $D E=D T_{2}+T_{2} E=53.58+109.19=162.77 \mathrm{~m}$.
y For $B D E A$

$$
\begin{aligned}
& \frac{D B}{\sin 40^{\circ}}=\frac{B E}{\sin 30}=\frac{D E}{\sin 110^{\circ}} \\
& D B=D E \times \frac{\sin 40^{\circ}}{\sin 110^{\circ}}=162.77 \times \frac{\sin 40^{\circ}}{\sin 110^{\circ}}=111.34 \mathrm{~m} . \\
& B E=\frac{\sin 30}{\sin 110^{\circ}}=162.77 \times \frac{\sin 30^{\circ}}{\sin 110^{\circ}}=86.61 \mathrm{~m} .
\end{aligned}
$$

$$
\begin{aligned}
& B T_{1}=B D+D T=111.34+53.56=164.92 \\
& B T 3=B E+E T 3=86.61+10917=195.8 m
\end{aligned}
$$

(5) Chaiqe 2 $\pi=950-164.72=785 \cdot 06 \mathrm{~m}$
(6) chyt cenelem $=\frac{\pi \times 200 \times 30^{\circ}}{180^{\circ}}=101.12$
(D) Cloge of $72=985.48+101772=889.88 \mathrm{~m}$.
(8) Lon cune lo, Lh $=\frac{71 \times 300 \times 1,0^{\circ}}{180^{\circ}}=209.44 \mathrm{~m}$
(9) chaye $T_{3}=889.80+209.4 y=1099.24 m$.

Devlection anheifor short aince
Takay a fall chord of 20 m .
No. 7 Fall chord $=5 \times 20=100$
lensthot subdurd $=104.72-\mathrm{N}=4.72$
δ For full chord $=\frac{17189 \times 20}{200}=2^{\circ} 31^{\prime} 53^{\prime \prime}$
$\delta \mathrm{m} \quad$ sut hor $t=\frac{1+1894.72}{200}=0^{\circ} 40^{\prime} 34^{\prime \prime}$
Chere
Totar deflection conste $=\Delta / 2=\frac{30}{2}=15^{\circ}$
calcuatey arte $=5 \times 2^{0} 51^{\prime} 53^{2 r}+0^{\circ} 40^{\prime} 30^{\prime \prime}=14^{\circ} 59^{\prime \prime} 59^{\prime \prime}$
deflectin ore for low che taray chel lent 3 om .

$$
=15^{\circ} \mathrm{sog}
$$

No of Full chor $1=30 \times 6=180^{\circ}$
lemh 7 subamd $=209 \cdot 44-180=29.44$
For falchrot $=\frac{17189 \times 30}{300}=2^{41} 51^{\prime} 53^{11}$
FF For Foncy subdm $=\frac{17189 \times 29}{300}=2^{\circ} 48^{\prime} 41^{\prime \prime}$

$$
\begin{aligned}
& \text { Tan deflectin gre }=M_{2}=\frac{40^{\circ}}{2}=20^{\circ}, 300 \\
& \text { calculatey ayse }=6 \times 2^{\circ} 51^{\prime} 33^{\prime \prime}+2^{\circ} 48^{\prime} 41^{\prime \prime}=19^{\circ} 59^{\prime} 59^{\prime \prime}
\end{aligned}
$$

Compound Curves

Problem: Two tangents $A B$ \& $B C$ are intersected by a line $K M$. the angles AKM and KMC are $140^{\circ} \& 145^{\circ}$ respectively. The radius of $1^{\text {st }}$ arc is 600 m and of $2^{\text {nd }}$ arc is 400 m . Find the chainage of tangent points and the point of compound curvature given that the chainage of intersection point is 3415 m .

Solution:

$$
\begin{aligned}
& \alpha=180^{\circ}-140^{\circ}=40^{\circ} \\
& \beta=180^{\circ}-145^{\circ}=35^{\circ} \\
& \emptyset=\alpha+\beta=75^{\circ} \\
& \mathrm{I}=180^{\circ}-75^{\circ}=105^{\circ} \\
& \mathrm{KT}_{1}=\mathrm{KN}=\mathrm{R}_{\mathrm{L}} \tan \left(\frac{\alpha}{2}\right)=600 \tan \left(40^{\circ} / 2\right) \\
& \mathrm{KT}_{1}=\mathrm{KN}=218.38 \mathrm{~m} \\
& \mathrm{MN}=\mathrm{MT}_{2}=\mathrm{R}_{\mathrm{S}} \tan \left(\frac{\beta}{2}\right)=400 \tan \left(35^{\circ} / 2\right) \\
& \mathrm{MN}=\mathrm{MT}_{2}=126.12 \mathrm{~m} \\
& \mathrm{KM}=\mathrm{MT}_{2}+\mathrm{MN}=218.38+126.12 \\
& \mathrm{KM}=344.50 \mathrm{~m}
\end{aligned}
$$

Compound Curves

Solution:

Fin $\triangle \mathrm{BKM}$, by sin rule

$$
\begin{aligned}
& \frac{B K}{\sin \beta}=\frac{M K}{\sin (I)} \\
& \mathrm{BK}=\frac{M K \sin \beta}{\sin (I)}=\frac{344.50 \times \sin 35^{\circ}}{\sin 105^{\circ}}=204.57 \mathrm{~m}
\end{aligned}
$$

$$
\mathrm{BM}=\frac{M K \sin \alpha}{\sin (I)}=\frac{344.50 \times \sin 40^{\circ}}{\sin 105^{\circ}}=229.25 \mathrm{~m}
$$

$$
\mathrm{T}_{\mathrm{L}}=\mathrm{KT}_{1}+\mathrm{BK}=218.38+204.57=422.95 \mathrm{~m}
$$

$$
\mathrm{T}_{\mathrm{S}}=\mathrm{MT}_{2}+\mathrm{BM}=126.12+229.25=355.37 \mathrm{~m}
$$

$$
\mathrm{L}_{\mathrm{L}}=\frac{\pi R L \alpha}{180^{\circ}}=\frac{\pi \times 600 \times 40}{180^{\circ}}=418.88 \mathrm{~m}
$$

$$
\mathrm{L}_{\mathrm{S}}=\frac{\pi R_{s} \beta}{180^{\circ}}=\frac{\pi \times 400 \times 30}{180^{\circ}}=244.35 \mathrm{~m}
$$

Compound Curves

Solution:

$$
\begin{aligned}
& =3415 \mathrm{~m} \\
& =-422.95 \mathrm{~m} \\
& =2992.05 \mathrm{~m} \\
& =+418.88 \mathrm{~m} \\
& =3410.93 \mathrm{~m} \\
& =+244.35 \mathrm{~m} \\
& =3655.25 \mathrm{~m}
\end{aligned}
$$

