1

Physical Organic Chemistry

- The key to understanding organic reactions lies in gaining an understanding of:
 - the structure and bonding of stable organic compounds.
 - reactivity of organic compounds.
 - reactive intermediates and transition states.
 - mechanisms through which organic compounds transform into other organic compounds.
 - kinetics, thermodynamics and the relationship between the two.

Models for Bonding

- Lewis structures: valence bond theory
 - Atoms interact to form discrete chemical bonds
- Molecular orbital theory
 - Nuclei interact, electrons are placed in molecular orbitals
 - Discrete bonds are not formed between atoms; electrons may "roam" over multiple nuclei.

Hybridization models: sp³, sp², sp orbitals

Valence shell electron pair repulsion (VSEPR) theory rationalises the tetrhedral shape of methane without the use of atomic or molecular orbitals

3

Autumn 2004

Models for Bonding

• Connection between hybridization of an atom and the arrangement in space of bonds around that atom:

sp³ hybridization occurs for atoms having four groups in a tetrahedral arrangement (note: a "group" may be an electron pair)

sp² hybridization occurs for atoms having three groups in a trigonal (planar) arrangement

sp hybridization occurs for atoms having two groups in a linear arrangement

- Hybridization and molecular geometry are closely correlated
- The covalent bond has a definite direction in space (compare to ionic bonds)
- The directionality of covalent bonding is responsible for molecular shape

Models for Bonding

Molecular orbital theory: methane

Molecular orbital theory: ethane

- Three of the carbon sp³ orbitals combine with one hydrogen 1s orbital each to form C-H bonds sp³ - 1s σ bonds (shown shaded in pink below)
- The remaining carbon sp³ bonding orbital from each carbon is used to form the C-C- bond in ethylene
 - $sp^3 sp^3 \sigma$ bond (shown shaded in blue below)

Models for Bonding

Molecular orbital theory: ethylene

- Two carbon sp² orbitals combine with one hydrogen 1s orbital each to form C-H bonds: sp² - 1s σ bonds (shaded in pink)
- The remaining carbon sp² bonding orbital from each carbon is used to form the C-C- bond in ethylene: $sp^2 sp^2 \sigma bond$ (shaded in blue)
- One half-occupied, unhybridized 2p_z orbital left over on each carbon combine to form two new p orbitals (one bonding and one antibonding orbital).
- Each carbon atom contributes one electron to occupy the bonding orbital to form a: *pi bond* (shaded in green)

carbon in acetylene

Acids and Bases

Lewis acids and bases

- A Lewis acid is an electron acceptor
- A *Lewis base* is an <u>electron donor</u>

Bronsted acids and bases

- A Bronsted acid is a proton donor
- A Bronsted base is a proton acceptor

Electrophiles and Nucleophiles

This terminology is used almost interchangeably with that of Lewis acids and Lewis bases

- Electrophile ("electron-loving") = Lewis acid
- Nucleophile ("nucleus-loving:") = Lewis base

Definition of pK_a

- The quantity "activity" may be thought of as an effective mole fraction. When reactions are carried out with very highly dilute acids in water, the activity of water approaches unity.
- We call this equilibrium constant for dissociation K_a.

$$K_{eq} = \frac{a_{A^-} a_{H^+}}{a_{AH} a_{H_2 O}} \approx \frac{a_{A^-} a_{H^+}}{a_{AH}} \longrightarrow K_a = \frac{\left[A^-\right] \left[H^+\right]}{\left[AH\right]}.$$

In terms of concentrations and activity coefficients

When we work in very dilute solutions, activity coefficients approach unity, and we can approximate the expression for K_a using concentrations.

Autumn 2004

Definition of pK_a

Bronsted acids exhibit a *huge* variation in strength, over many powers of 10. Therefore a log scale is used to describe acidity.

$$pK_a = -\log(K_a) = \left\{ -\log\left(\frac{\left[A^{-}\right]}{\left[HA\right]}\right) + \log\left(\left[H^{+}\right]\right) \right\}$$

From this we see how the quantity used to measure acidity in Bronsted acids (pK_a) is related to aqueous acidity (pH)

$$pH = -\log([H^+])$$

$$pK_a = -\log(K_a) = -\log\left(\frac{\left[A^{-}\right]}{\left[HA\right]}\right) + pH$$

Using pK_a

- Reaction is driven forward from the strong acid side to the weak acid side. This means that the equilibrium favors the side with the weaker acid and weaker base.
- This means that if we know the pK_a values of the acids on either side of the reaction equation, we can predict which direction will be favored.

HCN + OH
$$\frown$$
 CN + H2OHCN + NH3 \frown CN + NH4+ $pK_a = 9.4$ $pK_a = 15.7$ $pK_a = 9.4$ $pK_a = 9.25$ $pK_a((H_2O) - pK_a(HCN) = 15.7 - 9.4 = 6.3$ $pK_a((NH_4^+) - pK_a(HCN) = 9.25 - 9.4 = -0.15$ $K_{eq} = 10^{6.3} = 2 \times 10^6$ $K_{eq} = 10^{-0.15} = 0.71$ The equilibrium lies far to the rightThe equilibrium is lies slightly to the left

13

Autumn 2004

The influence of Organic Solvents on pKa

- pK_a values are defined and compiled for aqueous solutions.
- Most of our reactions in organic chemistry are carried out in organic solvents!
- We must adjust our thinking about pK_a

Table 3 Ionization constants of neutral acids of type HA in water, amphiprotic and dipolar aprotic solvents, respectively

Acid	pK _n							
	w	MeOH	EtOH	i-PrOH	t-BuOH	ACN	DMSO	DMF
Acetic	4.73	9.7	10.3	11.3	14.2	22.3		13.3
Chloroacetic	2.81	7.8	8.3	9.2	12.2.	18.8		10.1
Dichloroacetic	1.30	6.3	7.3	7.8	10.2	15.8		
Benzoic	4.21	9.4	10.1		15.1	20.7	11.0	12.3
3,4-diMe benzoic	4.4	9.7		11.7	15.4	21.2	11.4	13.0
3-Br benzoic	3.81	8.8	9.4	10.1	13.5	20.3	9.7	11.3
3,4-diCl benzoic	3.6	8.5		9.8	13.0	19.0	9.2	11.0
4-NO2 benzoic	3.45	8.3	8.9	9.6	12.0	18.7	9.0	10.6
3,5-diNO2 benzoic	2.82	7.5		8.3	10.6	16.9	7.4	8.9
2,4,6-triNO2 phenol	0.3	3.7	4.1	3.7	4.8	11.0		

K. Sarmini, E. Kenndler / J. Biochem. Biophys. Methods 38 (1999) 123-137

15

The influence of Organic Solvents on pKa

Acid pK_a values are affected more than weak bases are by organic solvents.

Table 4

Ionization constants of cation acids (monoprotonated bases) of type HB⁺

Acid	pK_n						
	w	MeOH	EtOH	DMSO	ACN		
Ammonium	9.2			10.5	16.5		
Ethylammonium	10.6			11.0	18.4		
Diethylammonium	11.0			10.5	18.8		
Triethylammonium	10.7	10.9		9.0	18.5		
n-Butylammonium	10.6			11.1	18.3		
Di-n-butylammonium	11.3			10.0	18.3		
Tri-n-butylammonium	10.9			8.4	18.1		
Anilinium	4.6		5.7ª	3.6	10.6		
Pyridinium	5.2	5.2 ^b		3.4	12.3		
4-Ethylpyridinium		6.1°			13.6°		

K. Sarmini, E. Kenndler / J. Biochem. Biophys. Methods 38 (1999) 123-137

Factors Affecting pK_a in Organic Solvents

• **Dielectric constant:** this parameter takes into account electrostatic interactions of the ions in solution.

Solvation ability	Solvent						
	Water	MeOH	DMSO	ACN			
Anion Cation	Very high Very high	Medium Very high	Low Very high	Very low Very low			

Factors Affecting pK_a in Organic Solvents

- Organic solvents are generally worse as solvators of anions than they are of cations.
- This helps explain why the pK_a values for bases such at Et₃N are less affected by solvent than are neutral acids.
- pK_a is affected more in MeCN because it is much less basic than the other non-H-bonding solvents of similar dielectric constant.
- Medium effects must also consider the role of the other charged species present (A⁻ and HB⁺).

Table 8 Ability of solvents to solvate anions and cations								
Solvation ability	Solvent	Solvent						
	Water	MeOH	DMSO	ACN				
Anion	Very high	Medium	Low	Very low				
Cation	Very high	Very high	Very high	Very low				

19

Autumn 2004

Example: Asymmetric Transfer Hydrogenation

• Imines can be reduced to amines using a transition metal catalyst and HCOOH as the hydrogen source.

(Avecia's CATHy catalyst process)

 When the reaction is carried out in MeOH as solvent, we need to think about what happens to the pK_a values of the reactants.

What state is the imine in during reaction?

Example: Asymmetric Transfer Hydrogenation

- The acidity of formic acid is drastically decreased in MeOH.
- We would expect this reaction to be driven towards the left.
- However, pK_a values are calculated for dilute solutions.

("thermodynamic" ionization constants vs. concentration pK_a values)

21

