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Nomenclature
For most purposes, it is sufficient to know the En(k) curves - the 
dispersion relations - along the major directions of the reciprocal 
lattice.

This is exactly what is done when real band diagrams of 
crystals are shown. Directions are chosen that lead from the 
center of the Wigner-Seitz unit cell - or the Brillouin zones - to 
special symmetry points. These points are labeled according to 
the following rules:

• Points (and lines) inside the Brillouin zone are denoted with 
Greek letters. 

• Points on the surface of the Brillouin zone with Roman 
letters. 

• The center of the Wigner-Seitz cell is always denoted by a Γ



For cubic reciprocal lattices, the points with a high symmetry on the 
Wigner-Seitz cell are the intersections of the Wigner Seitz cell with 
the low-indexed directions in the cubic elementary cell.

Nomenclature

simple
cubic



Nomenclature
We use the following nomenclature: (red for fcc, blue for bcc):

The intersection point with the [100] direction is 
called X (H)
The line Γ—X is called ∆.

The intersection point with the [110] direction is 
called K (N)
The line Γ—K is called Σ.

The intersection point with the [111] direction is 
called L (P)
The line Γ—L is called Λ . 

Brillouin Zone for fcc is bcc
and vice versa.
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The intersection point with the [110] direction is 
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The intersection point with the [111] direction is 
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Nomenclature



Real crystals are three-dimensional and we must consider 
their band structure in three dimensions, too.

Of course, we must consider the reciprocal lattice, and, as 
always if we look at electronic properties, use the Wigner-
Seitz cell (identical to the 1st Brillouin zone) as the unit cell. 
There is no way to express quantities that change as a 
function of three coordinates graphically, so we look at a 
two dimensional crystal first (which do exist in 
semiconductor and nanoscale physics). 

Electron Energy Bands in 3D

The qualitative recipe for obtaining the band structure 
of a two-dimensional lattice using the slightly adjusted 
parabolas of the free electron gas model is simple:



LCAO: Linear Combination of Atomic Orbitals

AKA: Tight Binding Approximation
• Free atoms brought together and the Coulomb interaction 

between the atom cores and electrons splits the energy levels 
and forms bands.

• The width of the band is proportional to the strength of the 
overlap (bonding) between atomic orbitals.

• Bands are also formed from p, d, ... states of the free atoms.
• Bands can coincide for certain k values within the Brillouin 

zone.
• Approximation is good for inner electrons, but it doesn’t 

work as well for the conduction electrons themselves.  It can 
approximate the d bands of transition metals and the valence 
bands of diamond and inert gases.





The lower part (the "cup") is 
contained in the 1st Brillouin zone, 
the upper part (the "top") comes 
from the second BZ, but it is 
folded back into the first one. It 
thus would carry a different band 
index. This could be continued ad 
infinitum; but Brillouin zones with 
energies well above the Fermi 
energy are of no real interest.

These are tracings along major 
directions. Evidently, they contain 
most of the relevant information 
in condensed form. It is clear that 
this structure has no band gap.

Electron Energy Bands in 3D



Electronic structure calculations such as our tight-binding method 
determine the energy eigenvalues εn at some point k in the first 
Brillouin zone. If we know the eigenvalues at all points k, then the 
band structure energy (the total energy in our tight-binding method) 
is just

LCAO: Linear Combination of Atomic Orbitals

where the integral is over the occupied states of below the Fermi 
level. 



The full Hamiltonian of the 
system is approximated by 
using the Hamiltonians of isolated atoms, each one centered at 
a lattice point.
The eigenfunctions are assumed to have amplitudes that go to 
zero as distances approach the lattice constant.
The assumption is that any necessary corrections to the 
atomic potential will be small.
The solution to the Schrodinger equation for this type of single 
electron system, which is time-independent, is assumed to be a 
linear combination of atomic orbitals. 



Band Structure: KCl

We first depict the band structure of an ionic crystal, KCl.  The bands are very 
narrow, almost like atomic ones. The band gap is large around 9 eV. For alkali 
halides they are generally in the range 7-14 eV.



Band Structure: simple cubic



Band Structure: silver (fcc)



Band Structure: tungsten (bcc)



Electron Density of States: Free Electron 
Model
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Schematic model of metallic 
crystal, such as Na, Li, K, etc.

The equilibrium positions of 
the atomic cores are 
positioned on the crystal lattice 
and surrounded by a sea of 
conduction electrons.

For Na, the conduction 
electrons are from the 3s 
valence electrons of the free 
atoms.  The atomic cores 
contain 10 electrons in the 
configuration: 1s22s2p6.



Electron Density of States: Free Electron 
Model
• Assume N electrons (1 for 

each ion) in a cubic solid  with 
sides of length L – particle in a 
box problem.

• These electrons are free to 
move about without any 
influence of the ion cores, 
except when a collision 
occurs.

• These electrons do not 
interact with one another.

• What would the possible 
energies of these electrons 
be?

∞

0 L



 How do we know there are free electrons?How do we know there are free electrons?

 You apply an electric field across a metal piece You apply an electric field across a metal piece 
and you can measure a current – a number of and you can measure a current – a number of 
electrons passing through a unit area in unit electrons passing through a unit area in unit 
time.time.

 But not all metals have the same current for a But not all metals have the same current for a 
given electric potential.  Why not?given electric potential.  Why not?



Electron Density of States: Free Electron 
Model



The electron density of states is a key parameter in the 
determination of the physical phenomena of solids. 

Electron Density of States

Knowing the energy levels, we can count how many energy 
levels are contained in an interval ∆E at the energy E. This is 
best done in k - space.

In phase space, a surface of constant 
energy is a sphere as schematically 
shown in the picture.
Any "state", i.e. solution of the 
Schrodinger equation with a specific k, 
occupies the volume given by one of 
the little cubes in phase space.
The number of cubes fitting inside the 
sphere at energy E thus is the number 
of all energy levels up to E.



Electron Density of States: Free Electrons

Counting the number of cells (each containing one possible state 
of ψ) in an energy interval E, E + ∆E thus correspond to taking 
the difference of the numbers of cubes contained in a sphere with 
"radius" E + ∆E and of “radius” E. We thus obtain the density of 
states D(E) as 
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where N(E) is the number of states between E = 0 and E per 
volume unit; and V is the volume of the crystal. 



Electron Density of States: Free Electrons
The volume of the sphere in k-space is
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Electron Density of States: Free Electrons
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Electron Density of States: Free Electrons

D(E)



Electron Density of States: Free Electron 
Model



From 
thermodynamics,
the chemical 
potential, and thus 
the Fermi Energy, is 
related to the 
Helmholz Free 
Energy:

where
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Electron Density of States: Free Electron 
Model

If an electron is added, it 
goes into the next available 
energy level, which is at the 
Fermi energy.  It has little 
temperature dependence.
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Fermi-Dirac Distribution

For lower energies,
f goes to 1.

For higher energies,
f goes to 0.



Free Electron Model: QM Treatment

where nx, ny, and nz are integers



Free Electron Model: QM Treatment

and similarly for y and z, as well

2 4
0,  ,  ,  ...

2 4
0,  ,  ,  ...

2 4
0,  ,  ,  ...

x

y

z

k
L L

k
L L

k
L L

π π

π π

π π

= ± ±

= ± ±

= ± ±

( )i k r
k eψ ×=



Free Electron Model: QM Treatment
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Free Electron Model: QM Treatment
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Free Electron Model: QM Treatment

The number of orbitals per 
unit energy range at the Fermi 
energy is approximately the 
total number of conduction 
electrons divided by the Fermi 
energy.



Free Electron Model: QM Treatment

As the temperature 
increases above T = 0 
K, electrons from region 
1 are excited into region 
2.

This represents how 
many energies are 
occupied as a function of 
energy in the 3D
k-sphere.





Electron Density of States: LCAO
If we know the band structure at every point in the Brillouin zone, then the 
DOS is given by the formula
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where the integral is over the surface Sn(ε) is the surface in k space at 
which the nth eigenvalue has the value εn.

Obviously we can not evaluate this integral directly, since we don't 
know εn(k) at all points; and we can only guess at the properties of its 
gradient.  One common approximation is to use the tetrahedron method, 
which divides the Brillouin zone into (surprise) tetrahedra, and then 
linearly interpolate within the tetrahedra to determine the gradient. This 
method is an approximation, but its accuracy obviously improves as we 
increase the number of k-points. 



When the denominator in the integral is zero, peaks due to van Hove 
singularities occur. Flat bands give rise to a high density of states. It is also 
higher close to the zone boundaries as illustrated for a two dimensional 
lattice below.

Electron Density of States: LCAO
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Leon van Hove



• For the case of metals, the 
bands are very free electron-
like (remember we compared 
with the empty lattice) and the 
conduction bands are partly 
filled.

• The figure shows the DOS for 
the cases of a metal , Cu, and a 
semiconductor Ge. Copper has 
a free electron-like s-band, 
upon which d-bands are 
superimposed. The peaks are 
due to the d-bands. For Ge the 
valence and conduction bands 
are clearly seen.

Electron Density of States: LCAO



Electron Density of States: LCAO

 fccThe basic shape of 
the density of states 
versus energy is 
determined by an 
overlap of orbitals.  In 
this case s and d 
orbitals…



Electron Density of States: LCAO

bcc
tungsten


