

LINEAR COMBINATION OF ATOMIC ORBITALS (L.C.A.O).

COURSE: REVIEW OF QUANTUM MECHANICS AND E.M.T

CODE: 612

COURSE INSTRUCTOR: ASSISTANT PROFESSOR DR. P. THANGADURAI.

PRESENTED BY : ROOPAVATH UDAY KIRAN M.Tech 1st YEAR , sem -1.

Introduction

• If an electron can be found in an atomic orbital belonging to atom A and also in an atomic orbital belonging to atom B, then the over all wave function is a superposition of the two orbitals.

 $\psi_{\pm} = N(A \pm B)$

- The technical term for superposition in the above equation is a linear combination of atomic orbitals.
- The approximate molecular orbital formed from a linear combination of atomic orbitals is called a LCAO-MO.

A molecular orbital that has cylindrical symmetry around the internuclear axis, such as the one we are discussing, is called a σ orbital because it resembles an s orbital when viewed along the axis and, more precisely, because it has zero orbital angular momentum around the internuclear axis.

Normalizing a molecular orbital

- Normalize the molecular orbital ψ_+
- To proceed, substitute the LCAO into this integral, and make use of the fact that the atomic orbitals are individually normalized.
- · When we substitute the wavefunction in the following normalization condition, we find

$$\int \psi \psi^* d\tau = 1$$

$$\int \psi \psi^* d\tau = N^2 (\int A^2 d\tau + \int B^2 d\tau + 2 \int AB d\tau)$$

$$= N^2 (1+1+2S)$$

First and second terms are atomic orbitals and they are individually normalized.

where, $S = \int ABd\tau$. For the integral to be equal to 1, we require

$$N = \frac{1}{\{2(1+S)\}^2}$$

In H₂⁺, S=0.59, so N = 0.56

- The lower-energy orbital, which has the form $\psi_{+} = \phi_{A} + \phi_{B}$ is called a bonding orbital.
- The higher energy orbital, which has the form $\psi_{-} = \phi_{A} \phi_{B}$ is called Anti bonding orbital
- An anti bonding orbital is more anti bonding than a bonding orbital is bonding.

Molecular Orbitals are simply Linear Combinations of Atomic Orbitals ("L.C.A.O.-M.O.s")

 σ anti-bonding (σ^*)

Example: H₂

1sA

1s_B

Next Question: Why does this work?

Bonding is driven by stabilization of electrons

- Electrons are negatively charged
- Nuclei are positively charged

The antibonding combination moves electron density away from the nuclei - destabilization

 σ_{1s}^* and σ_{1s}^* are molecular orbitals in the H₂ molecule.

H atom: $(1s)^1$ electron configuration H₂ molecule: $(\sigma_{1s})^2$ electron configuration

Same as previous description of bonding H atom H atom Sufficiently far apart to have no interaction Energy (kJ/mod) 0 HH н H atom H atom The atoms begin to interact as they move closer together. HH -458 0.074Internuclear distance (nm)-0 H₂ molecule Optimum distance to achieve (H-H bond length) lowest overall energy of system i) (b)

Bond Order

Bond Order: Examples

Bond order = (2-0)/2 = 1 Single bond Stable molecule (450kJ/mol bond)

Bond order = (2-2)/2 = 0

No bond!

Unstable molecule (0kJ/mol bond)

Bond order = (1-0)/2 = 1/2Half of a single bond H_L Can be made, but its not very stable (255kJ/mol bond)

Thank you..!