

OZONOLYSIS

Prepared By

Dr. Krishnaswamy. G

Faculty
DOS & R in Organic Chemistry
Tumkur University
Tumakuru

Oxidative cleavage of carbon-carbon double bond using ozone as an oxidizing agent is called Ozonolysis.

$$R_{1} = \begin{cases} R_{2} & O_{3} \\ R_{3} & R_{4} \end{cases} \longrightarrow R_{1} \qquad R_{2}$$

$$R_{3} \qquad R_{4} \qquad R_{3} \qquad R_{4}$$

The reaction is performed in common organic solvents such as Dichloromethane (or) Methanol (or) Acetone at -78° C.

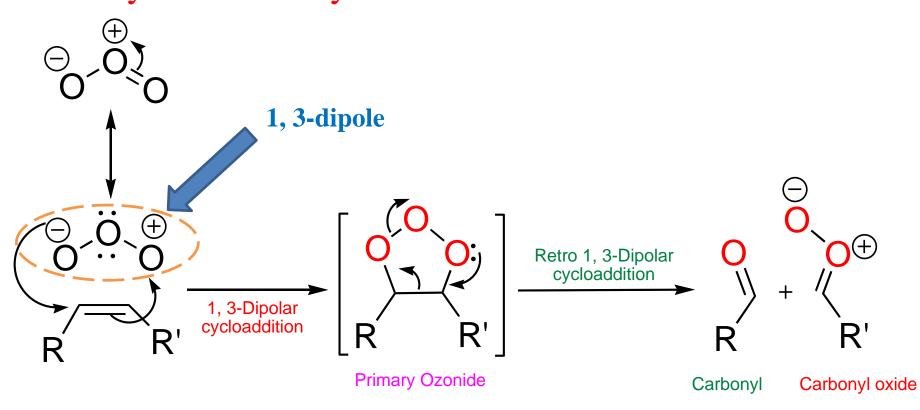
Ozonolysis of carbon-carbon double takes place through ozonide intermediate followed by work up results in the formation of respective products.

Work up in the ozonolysis may be divided into three categories.

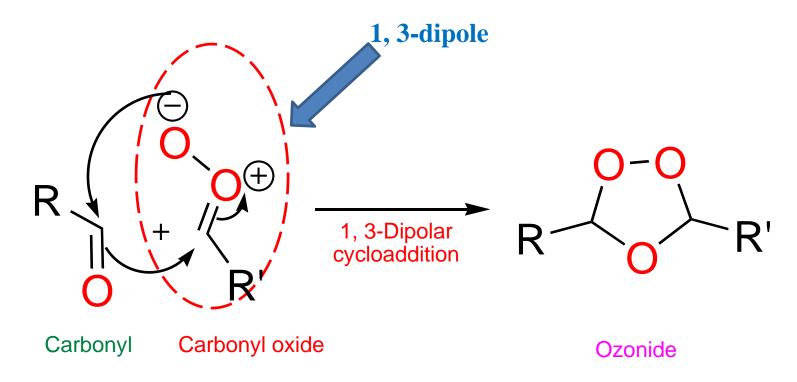
- (1) Reductive work up using mild reducing agents such as Me₂S (or) PPh₃ (or) Zn dust.
- (2) Reductive work up using strong reducing agents such as LiAlH₄ (or) NaBH₄.
- (3) Oxidative work up using oxidizing agents such as H_2O_2 (or) O_2 .

(1) Reductive work up using mild reducing agents such as Me₂S (or) PPh₃ (or) Zn dust produces aldehyde and ketone.

$$R_1$$
 R_2
 R_3
 R_4
 R_3
 R_4
 R_4
 R_5
 R_4
 R_5
 R_4
 R_5
 R_6
 R_6
 R_6
 R_6
 R_7
 R_8
 R_8
 R_8
 R_8
 R_9
 R_9


(2) Reductive work up using strong reducing agents such as LiAlH₄ (or) NaBH₄ produces alcohols.

$$R_1$$
 R_2
 R_3
 R_4
 R_3
 R_4
 R_3
 R_4
 R_4
 R_4
 R_4
 R_5
 R_4
 R_5
 R_6
 R_6
 R_6
 R_6
 R_6
 R_6
 R_7
 R_8
 R_9


(3) Oxidative work up using oxidizing agents such as H_2O_2 (or) O_2 provides carboxylic acids.

Mechanism

Ozone inserts to the alkene by 1, 3-dipolar cycloaddition to form primary ozonide, which is highly unstable and undergoes retro 1, 3-dipolar cycloaddition to form carbonyl and carbonyl oxide.

Carbonyl oxide which has a dipole undergoes once again 1, 3 – dipolar cycloaddition reaction with carbonyl to for the stable ozonide.

The stable ozonide reacts with reducing (or) oxidizing agents to give desired products.

Ozonide

Ozonolysis of simple allenes leads to the formation of two carbonyl fragments and carbon monoxide.

Ozonolysis of alkynes leads to the formation of either acid anhydrides or a diketone.

$$-C \equiv C - \frac{O_3}{C - C} - \frac{O$$