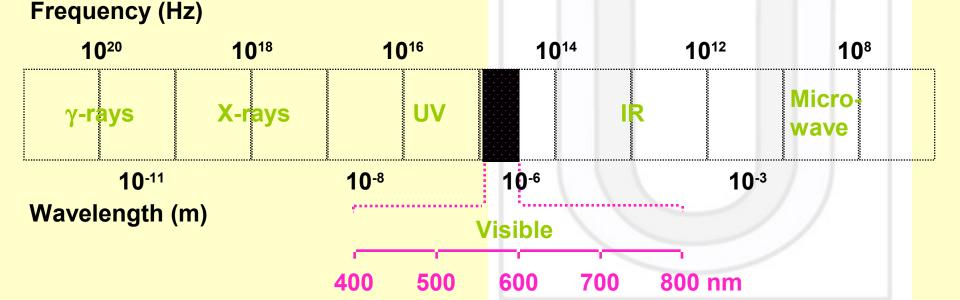

Photochemistry

Photochemistry

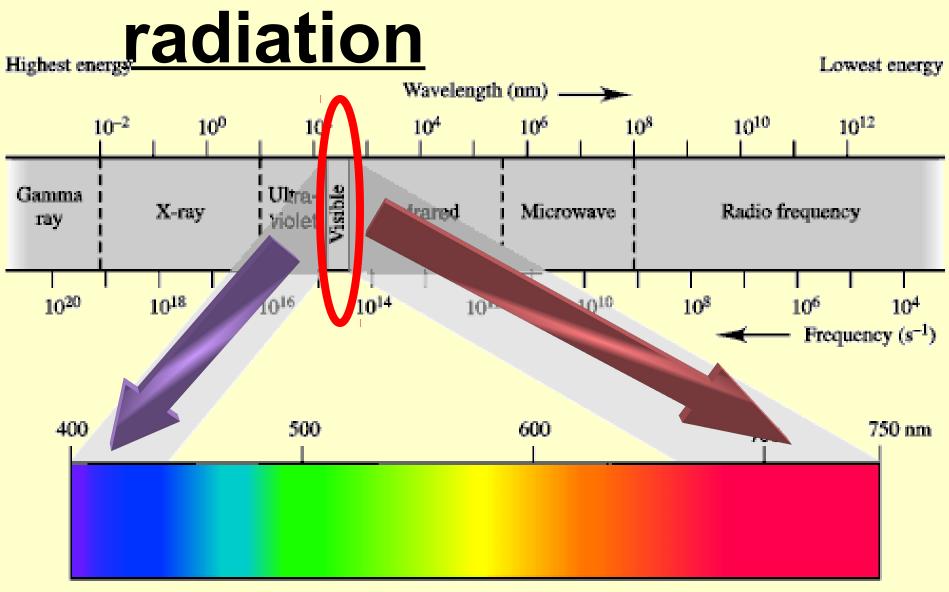

Chemical reactions accompanied with light.

1.Action of light \rightarrow chemical change (light induced reactions)

2. Chemical reaction \rightarrow light emission (chemiluminescence)

The Electromagnetic Spectrum

- Names of the regions are historical.
- There is no abrupt or fundamental change in going from one region to the next.
- Visible light represents only a very small fraction of the electromagnetic spectrum.


Photon a particle of light.

Electromagnetic radiation ALL light. Visible AND invisible visible light, x-rays, gamma rays, radio waves, microwaves, ultraviolet rays, infrared.

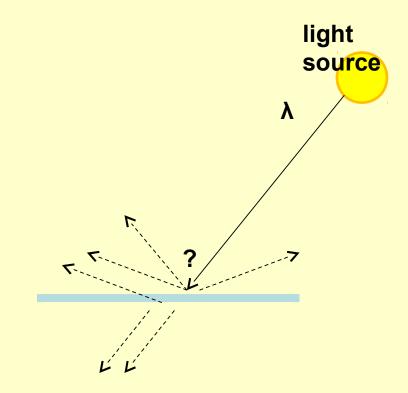
Photon a particle of light

Electromagnetic

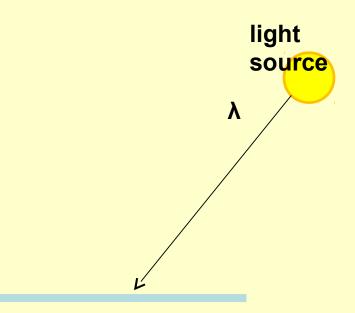
Visible region

A prism bends light. Different Colors are bent by different amounts.

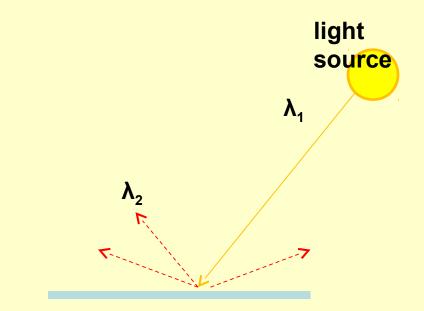
Luminescence:

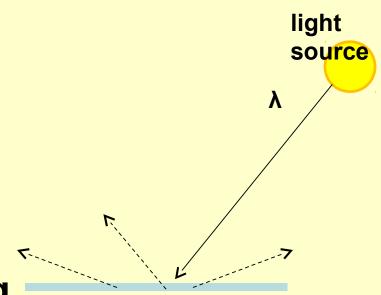

- Chemiluminescence:

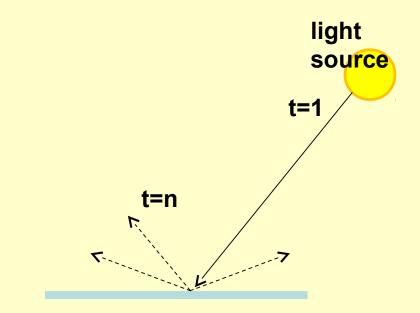
$$P_{4(g)} + O_{2(g)} + H_2O_{(g)} \rightarrow \rightarrow P_4O_{10} + h\nu$$
green


- Bioluminescence: - mushrooms

- insects
- fishes


- Absorption
- Diffusion
- Reflection
- Transparency
- Refraction
- Fluorescence
- Subsurface scattering
- Phosphorescence
- Interreflection


- Absorption
- Diffusion
- Reflection
- Transparency
- Refraction
- Fluorescence
- Subsurface scattering
- Phosphorescence
- Interreflection


- Absorption
- Diffusion
- Reflection
- Transparency
- Refraction
- Fluorescence
- Subsurface scattering
- Phosphorescence
- Interreflection

- Absorption
- Diffusion
- Reflection
- Transparency
- Refraction
- Fluorescence
- Subsurface scattering
- Phosphorescence
- Interreflection

- Absorption
- Diffusion
- Reflection
- Transparency
- Refraction
- Fluorescence
- Subsurface scattering
- Phosphorescence
- Interreflection

Definitions and terms

Light: electromagnetic field vibration spreading in quanta (photons)

Photon:the smallest amount of lightcarrying energy

Energy of photons (A. Einstein)

$$E = h_{v} = h \frac{C}{\lambda}$$

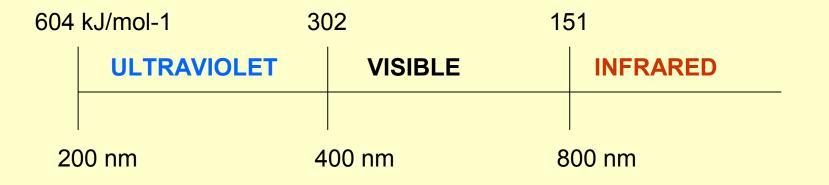
h = Planck's constant ($6.6 \cdot 10^{-34}$ Js)

c = speed of light $(3 \cdot 10^8 \text{ ms}^{-1})$

 λ = wavelength

v = frequency

Einstein's Equivalency Principle


One particle of a chemical substance can absorb only *one photon* from a light beam: $\Delta E = hv$

For one mole: $\Delta E = Nhv$

N = Avogadro's number $(6.02 \cdot 10^{23})$

Chemical bond energies: from 100 – 1000 kJ/mol

Light energies:

So UV – and VIS region is expected to induce chemical reactions.

Laws of Photochemistry

- 1. Only light that is absorbed can produce photochemical change (Grotthus, Draper)
- 2. A molecule absorbs a single quantum of light is becoming excited (Stark, Einstein)

Mechanisms of Light Absorption

Excitation:

 $X_2 \xrightarrow{h_V} X_2^*$

A bonding electron is lifted to a higher energy level (higher orbital)

INTERACTION OF LIGHT AND MATERIALS:

a) $X_2^* \rightarrow X_2^* + M^*$ (excess energy transferred to the surrounding)

b) $X_2^* \rightarrow X_2 + hv$ (fluorescence or phosphorescence)

c) $X_2^* + Y \rightarrow$ chemical reaction (excess energy supplies the activation energy of the reaction) Types of photochemical reactions:

a) Photodissociation

2.

b) Photosynthesis: when a larger molecule is formed from simple ones

c) Photosensitized reactions: when an excited molecule supplies activation energy for the reactants

$$X_2 \xrightarrow{h_V} X + X$$
 (photodissociation)

(energy of the photon supplies the "dissociation heat")

Photodissociation Photolysis of hydrogen bromide

HBr $\xrightarrow{h_V}$ H + Br (photochemical reaction) H + HBr \longrightarrow H₂ + Br (dark reactions) Br + Br \longrightarrow Br₂

Overall:

2HBr
$$\xrightarrow{h_V}$$
 H₂ + Br₂

1 photon absorbed, 2 molecules of HBr dissociated:

QUANTUM YIELD =
$$\frac{2}{1}$$
 = 2

Φ = number of molecules undergoing the process number of quanta absorbed

Ozone formation in the atmosphere (at about 25 km altitude)

$$O_2 \xrightarrow{h_V} O + O$$
 (λ<240 nm)
2 O_2 + 2O (+M) → 2 O_3 (+M*)

Notes: M absorbs energy released in the reaction

QUANTUM YIELD =
$$\frac{2}{1}$$
 = 2

Ozone formed in the reaction above absorbs UV light as well:

$$O_3 \xrightarrow{h_V} O_2 + O \quad (\lambda < 340 \text{ nm})$$

 $O + O_3 \longrightarrow 2O_2$

Notes:

1.Ozone shield protects the Earth surface from high energy UV radiation (of the Sun)

2.Air pollution (freons: fully halogenated hydrocarbons; nitrogen oxides emitted by aeroplanes etc.) may accelerate the decomposition of ozone ⇒ ozone hole

Photosynthesis

The photosynthesis of hydrogen chloride

Overall reaction:

 $Cl_2 + H_2 \longrightarrow 2HCI$ [no reaction in darkness]

Mechanism:

$$Cl_{2} \xrightarrow{h_{V}} 2CI \qquad Photochem. initiation$$

$$Cl + H_{2} \longrightarrow HCl + H \qquad Dark reactions$$

$$H + Cl_{2} \longrightarrow HCl + CI \qquad \downarrow$$

$$Chain reaction$$

$$H + H + M \longrightarrow H_{2} + M^{*}$$

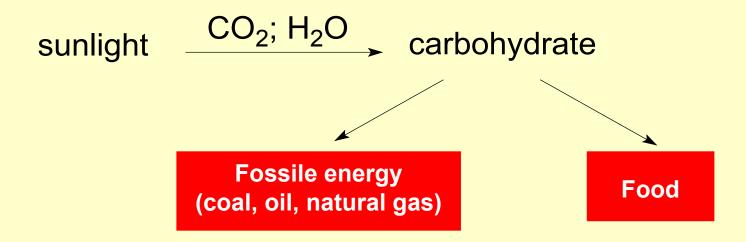
$$Cl + Cl + M \longrightarrow Cl_{2} + M^{*} \qquad Recombination reactions (chain is terminated)$$

Note:_

Quantum yield is about 10⁶ (explosion)

Photosensitized reactions

Photosynthesis in plants


Overall reaction:

$$6CO_2 + 6H_2O \xrightarrow{hv; chlorophyll} C_6H_{12}O_6 + 6O_2$$

several steps carbohydrate

Notes:

1. Chlorophyll acts as a catalyst absorbing and transferring the photon energy for reduction of carbon dioxide to carbohydrate

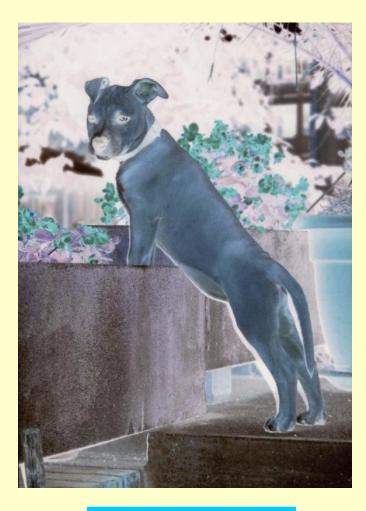
2. This reaction maintains the life on the Earth:

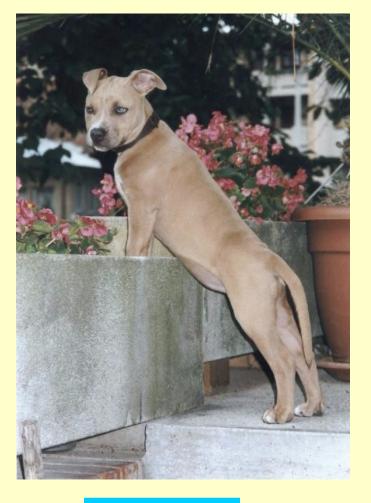
Photography

a) Photographic film: colloidal suspension of finely powdered silver halogenide in gelatine

b) When exposed to light AgBr granuli become activated according to the intensity of light:

AgBr \xrightarrow{hv} AgBr*


c) Development: Treating the exposed film with a mild reducing agent the activated granuli will accelerate the reduction to metallic silver (black)


Unactivated granuli will be unaffected (but photosensitive!)

d) Fixation: Unaffected (photosensitive) AgBr should be removed:

AgBr + $2S_2O_3^{2-} \longrightarrow [Ag(S_2O_3)_2]^{3-} + Br^{-}$

e) The resulted photograph is negative (light spots of the object are black and vice versa):

Negative film

 f) The negative film should be inversed placing it onto a new non-exposed sheet, illuminating, and repeating the development + fixation procedure

