Photosynthesis Light Reaction

Photosynthesis

- Purpose: use energy from light to convert inorganic compounds into organic fuels that have stored potential energy in their carbon bonds
- Carbon dioxide + water → glucose + oxygen
 CO2 + H2O → C6H12O6 + O2

Comparing Metabolic Processes

- Photosynthesis and cellular respiration are complementary processes
- They are not opposite reactions even though their overall equations are the reverse because the multiple steps the make up each process is different

Figure 9.2

Autotrophs

- Organisms that obtain energy without needing to ingest other organisms
- Require the input of inorganic substances from the environment
- Photoautotrophs: also use light energy
 - Examples: green plants, algae, certain species of bacteria

Types of Variants

- Identify:
- Cuticle
- Epidermis
- Palisade mesophyll
- Spongy mesophyll
- Guard cells
- Stoma / stomata
- Vascular bundle

- Which leaf structure perform each of these functions?
 - Prevent water loss and gas exchange
 - Regulates gas exchange
 - Transports water and nutrients
 - Mainly photosynthesis (contains the most chloroplast)

- Why are palisade cells long and narrow?
 - Fit more cells in the same space for more photosynthesis
 - Interaction between photosynthetic side and nutrient / gas absorption side

Review: Chloroplast Structure

Nature of Light

Nature of Light

- Light is a form of energy with different wavelengths
- The shorter the wavelength, the greater the energy of each photon of light
- Certain wavelengths of light are detectable by human eyes and seen as colours
- Visible light drives photosynthesis

Light Absorbing Pigments

Absorption Spectrum

Wavelength of light (nm)

Absorption Spectrum

 Chlorophyll is a green pigment that absorbs mainly blue and red wavelengths of light reflecting back green

Wavelength of light (nm)

Absorption Spectrum

Wavelength of light (nm)

2 Stages of Photosynthesis

"Photo" stage:

- light dependent reactions
- Energy fixing reactions
- Convert light energy to make ATP & NADPH which will be used to drive the next stage
- "Synthesis" stage:
 - "dark" / light-independent reactions, Calvin cycle
 - Carbon fixing reactions
 - Uses ATP to convert inorganic molecules to organic fuel containing stored potential energy in the bonds

2 Stages of Photosynthesis

Copyright @ Pearson Education, Inc., publishing as Benjamin Cummings.

Light Reaction Purpose

3 Parts to Light Reactions

Photoexcitation

- Absorption of light photons whose energy is used to split water releasing electrons
- Electron transport
 - Harnessing the energy in electrons to form an electrochemical gradient (pump hydrogen ions against its concentration gradient)
- Photophosphorylation (chemiosmosis)
 - ATP synthesis due to electrochemical gradient and the proton motive force

Photoexcitation

- When atoms absorb energy from the sun, electrons gain energy becoming excited
- Excited electrons will fall back to ground state if it isn't transferred to an electron acceptor

(a) Excitation of isolated chlorophyll molecule Copyright @ Pearson Education, Inc., publishing as Benjamin Cummings.

Photosystems

Photosystem Structure

- Consists of a few hundred pigment molecules
- Reaction centre contains a chlorophyll a that is located next to a primary electron acceptor

Photosystem Mechanism

- Light excites an electron on the reaction-centre chlorophyll a
- Primary electron acceptor traps the high energy electron before it can return to ground state

Photosystem Mechanism

- Photosystem I: Reaction-centre chlorophyll is P700
- Photosystem II: Reaction-centre chlorophyll is P680
- Numbers indicate optimal wavelength for absorption
- different absorption preferences due to interaction with different proteins in photosystems

Review: Chloroplast Structure

Thylakoid Proteins: PSII (P68o)

PSII absorbs light

- Excited electron in the reactioncentre chlorophyll (P68o) is captured by the primary electron acceptor
- P68o now "missing" an electron is a very strong oxidizing agent
- Electrons are extracted from water (in the lumen) to replace the missing electrons on P68o
- As a result, water is split into oxygen and hydrogen ions

Thylakoid Proteins: Pq

Electron capture by primary electron acceptor of PSII will now be passed through an electron transport chain The electron is first transferred to plastiquinone (Pq) Pq is a mobile component within the thylakoid membrane

Thylakoid Proteins: Cytochrome Complex

- Electrons are transferred from Pq to cytochrome complex
- protons are pumped against its concentration gradient from stroma across thylakoid membrane to the lumen

Thylakoid Proteins: Pc

- Electrons are transferred to plastocyanin (Pc)
- Pc is a movable component on lumen side of the thylakoid membrane

Thylakoid Proteins: PSI (P700)

- Electrons on P700 is excited by light and captured by the primary electron acceptor leaving P700 oxidized Electrons transferred from Pc to P700
 - replaces the electrons that were lost

Thylakoid Proteins: Fd

- Electrons undergo a second transport chain
- Electrons are transferred to ferrodoxin (Fd)
- Fd is an iron containing mobile component on the stromal side of the thylakoid membrane

Thylakoid Protein: NADP+ Reductase

electrons transferred by enzyme NADP+ reductase to the final electron acceptor NADP+ NADP+ is

reduced to NADPH

Compare NAD+ to NADP+

Purpose of NADPH

 NADPH will provide the reducing power for the synthesis of sugar in the Calvin cycle

Copyright @ Pearson Education, Inc., publishing as Benjamin Cummings.

Thylakoid Proteins: ATP Synthase

protons pumped into the lumen pass through ATP synthase using the same mechanism as seen in cellular respiration ATP is produced in the stroma

Photophosphorylation

light-dependent formation of ATP by chemiosmosis

Photophosphorylation

ETC provides energy for photosystems to pump H+ from stroma to lumen

Photophosphorylation

Electrochemical proton gradient provides proton motive force needed to synthesize ATP

Types of Electron Transport Mechanisms

Non-cyclic electron flowCyclic electron flow

Non-cyclic Electron Flow: Z-Scheme

Copyright © Pearson Education, Inc., publishing as Benjamin Cummings.

Non-cyclic Electron Transfer Summary

- H2O is split to produce O2 (released from cell) and H+ ions (released into lumen)
- Electron transport chain helps establish electrochemical proton gradient
- Photophosphorylation: light-dependent formation of ATP by chemiosmosis
- NADP+ is final electron acceptor and produces NADPH

Noncyclic Electron Flow Analogy

Copyright @ Pearson Education, Inc., publishing as Benjamin Cummings.

Cyclic Electron Flow

Cyclic Electron Transfer Summary

- only involves photosystem I (P700)
- ferrodoxin returns electrons back to cytochrome complex
- protons pumped into lumen to produce more ATP through chemiosmosis
- no NADPH produced

Purpose of Cyclic Electron Flow

Copyright @ Pearson Education, Inc., publishing as Benjamin Cummings.

Purpose of Cyclic Electron Flow

In the Calvin cycle, more ATP is consumed than NADPH

Need a method to increase ATP production without affecting NADPH

Purpose of Cyclic Electron Flow

When ATP runs low, NADPH will accumulate because the Calvin cycle slows down **Rise in NADPH** levels stimulate a temporary shift to cyclic electron flow

Compare Cellular Respiration and Photosynthesis

Compare Cellular Respiration and Photosynthesis

