Setting out of Curve

Prof. Prafulla Kumar Panda
Centurion University of Technology and
Management
Contact:9438269572
E-mail: prafullapanda@cutm.ac.in

Shaping Lives...
Empowering Communities

Method of setting out simple circular

curves :

Setting out means locating various points at equal and convenient distances along the length of the curve.

Distance between two successive points called as peg interval.

There are two type of methods for setting out simple circular curves based on the instrument used in method :

1. Linear method.
2. Angular method.

Setting out Circular Curves by linear Methods:

There are 4 methods by which pegs on the centreline of circular curves can be set out:

1. Offsets from the long chord.
2. Offsets from chords produced.
3. Offsets from the tangent lengths
4. Method of successive bisection of arcs or chords.

1. Setting out using Offisets from the Long Chord :

This traditional method also requires two tapes and is also suitable for curves of small radius such as kerbs or boundary walls.

$$
\begin{aligned}
O M & =\sqrt{\left(O T_{1}^{2}-M T_{1}^{2}\right)} \\
& =\sqrt{\left(R^{2}-(L / 2)^{2}\right)} \\
C M & =O C-O M \\
O_{0} & =R-O M \\
O_{0} & =R-\sqrt{R^{2}-(L / 2)^{2}}
\end{aligned}
$$

thenangle $O P G$

$$
O G=\sqrt{R^{2}-x^{2}} \text { and } O M=R-O_{0}
$$

the required offset

$$
P P^{\prime}=O G-O M
$$

Heace,

$$
P P^{\prime}=\sqrt{R^{2}-x^{2}}-\left(R-O_{0}\right)
$$

ar

$$
\begin{aligned}
O_{x} & =\sqrt{R^{2}-x^{2}}-\left(R-O_{0}\right) \\
& =R\left(1-x^{2} / R^{2}\right)^{1 / 2}-R+O_{0} \\
& =R\left(1-x^{2} /\left(2 R^{2}\right)+\ldots\right)-R+O_{0} \\
& =O_{0}-\frac{x^{2}}{2 R}
\end{aligned}
$$

Fig. 11.9

(i) By offsets or ordinate from the long chord.

$$
O_{0}=R-\sqrt{R^{2}-\left(\frac{L}{2}\right)^{2}}
$$

$$
\partial_{x}=\sqrt{R^{2}-x^{2}}-\left(R-O_{0}\right)
$$

R = Radius of curve
$\mathrm{O}_{0}=$ Mid ordinate
Ox = Ordinate at distance x
T1, T2 = tangents point
$\mathrm{L}=$ Length of long chord.

(ii) By successive bisection of arcs or chords.
$O_{n}=R-\sqrt{R^{2}-\left(\frac{L}{2}\right)^{2}}$

- $\mathrm{T} 1-\mathrm{T} 2=\mathrm{L}$
- T1-C = L
- T2-C = L

- C-C1, C-C2=L
- C1-T1, C2-T2=L
is enablished (Fig. 11,12). $T_{1} C$ and $T_{2} C$ are joined. $T_{1} C$ and $T_{2} C$ are bisected at nad D_{2}, respectively. Perpendicular offsets $D_{1} C_{1}$ and $D_{2} C_{2}$ each will be equal to (1) $-\cos \Delta / 4$). These offisets are set out giving points C_{1} and C_{2} on the curve. By accestive bisection of the chords $T_{1} C_{1}, C_{1} C, C C_{2}$ and $C_{2} T_{2}$, more points may be arined which when joined produce the required curve.

By pflsets from the chords produced This is the best method for setting out a Ing curve by linear method and is sually employed for highway anes when a theodolite is not ariable.
T_{1} is the P.C. along the tangent II (Fig. 11.13), $T_{1} a$ is the first shechord, C_{1}. From the P.C., a legth equal to first sub-chord C_{1} $T_{, ~}{ }^{*}$) is taken. The perpendicular Ifiet $\left(0_{1}\right) a a^{\prime}$ is set out, thereby string point a. $T_{1} a$ is joined and Podoced by distance C_{2} (full (thend length). The second offset $a(b b)$ is set out to get point b. aind b are joined and produced ther by distance C_{3} (full chord

Fig. 11.13 Offsets from chords produced

414 sumping
leng(t). The third offset $O_{3}\left(c^{\prime}\right)$ is set out to get point $c_{\text {. The pro }}$.

$$
\text { Fithe curve is completed } \angle d T_{1} a=\delta_{1}=\text { deflection angle of the first chorg }
$$

$$
\begin{align*}
& \text { onpleted. } \tag{1}\\
& \angle d^{\prime} T_{1} a=\delta_{1}=\text { deflection ang } \\
& a^{\prime} a=T_{1} a \delta_{1}=C_{1} \delta_{1}
\end{align*}
$$

$$
\begin{aligned}
O_{1} & =a^{\prime} a=T_{1} a o_{1} \\
{ }_{1} O a & =2 \angle a T_{1} a^{\prime}=2 \delta_{1}
\end{aligned}
$$

Putting this value of δ_{1} in Eq. (1) we get

$$
O_{1}=C_{1} \times \frac{C_{1}}{2 R}=\frac{C_{1}^{2}}{2 R}
$$

For computing O_{2}, a tangent $P Q$ is drawn to the curve at a, and is produced both ways.

$$
\begin{aligned}
a b^{\prime} & =a b=C_{2} \\
O_{2} & =b^{\prime} b=b^{\prime} Q+Q b \\
b^{\prime} Q & =O_{2}^{\prime} \\
Q b & =O_{2}^{\prime \prime} \quad \text { (offset betwe } \\
O_{2}^{\prime \prime} & =C_{2} \times \delta_{2}=C_{2} \times \frac{C_{2}}{2 R}=\frac{C_{2}^{2}}{2 R} \\
O_{2}^{\prime} & =C_{2} \times \delta_{1}=C_{2} \times \frac{C_{1}}{2 R^{2}} \\
O_{2} & =O_{2}^{\prime}+O_{2}^{\prime \prime} \\
& =\frac{C_{1} C_{2}}{2 R}+\frac{C_{2}^{2}}{2 R} \\
& =\frac{C_{2}}{2 R}\left(C_{1}+C_{2}\right)
\end{aligned}
$$

$$
Q b=O_{2}^{\prime \prime} \quad \text { (offset between the tangent and the chord) }
$$

$$
\text { so that } \quad \mathrm{O}_{2}=\mathrm{O}_{2}^{\prime}+\mathrm{O}_{2}^{\prime \prime}
$$

Similarly, the third offset $O_{3}=\frac{C_{3}}{2 R}\left(C_{2}+C_{3}\right)=c c^{\prime}$
But normally, $C_{2}=C_{3}=$

3. By offisets from the tangents:

There are two types for sitting out simple circular curves by method of offsets from the tangents :

1. RADIAL OFFSET.
2. PERPENDICULAR OFFSET.
(iii) By offsets from the tangents. - Two types

- Radial offset Perpendicular offset

$O_{x}=\sqrt{R^{2}+x^{2}}-R$

Fig. 11. 10 Perperaticudar affieda from the taingent

In the triangle OEP

$$
P O^{2}=O E^{2}+P E^{2}
$$

or

$$
R^{2}=\left(R-O_{x}\right)^{2}+x^{2}
$$

or

$$
\begin{aligned}
\left(R-O_{s}\right)^{2} & =R^{2}-x^{2} \\
\left(R-O_{s}\right) & =\sqrt{R^{2}-x^{2}} \\
O_{s} & =R-\sqrt{R^{2}-x^{2}}
\end{aligned}
$$

(exact expresian)
$=R-\left(R^{2}-x^{2}\right)^{1 / 2}$
$=R-R\left(1-x^{2} / R^{2}\right)^{1 / 2}$
$=R-R\left(1-x^{2} /\left(2 R^{2}\right)+x^{4} /\left(8 R^{4}\right)+\ldots\right)$
$=R-R\left(1-x^{2} /\left(2 R^{2}\right)\right) \quad$ (ncglecting higher poom)

$$
=R-R+R r^{2} /\left(2 R^{2}\right)
$$

$$
O_{x}=x^{2} / 2 R
$$

(approximate expresuise
Assigring different values to x, the corresponding vilues of offisets O, can be ald culated. These calculated offiets can be laid from the tangent at known diunon! curve. Radial offrets from tangent
tangent from T_{1} (Fig. 11.111 . $\quad O_{\text {, }}$ is the radial offiset $P P$ at any distance x aloset ${ }^{*}$ From the triangle or ip

$$
\begin{gathered}
O P^{2}=O T_{1}^{2}+T_{1} P^{2} \\
\left(R+O_{x}\right)^{2}=R^{2}+x^{2} \\
R+O_{x}=\sqrt{R^{2}+x^{2}}
\end{gathered}
$$

$$
\begin{aligned}
O_{x} & =\sqrt{\left(R^{2}+x^{2}\right)-R} \quad \text { (exact expression) } \\
& =R\left(1+x^{2} / R^{2}\right)^{1 / 2}-R \\
& =R\left(1+x^{2} /(2 R)^{2}+x^{4} /(8 R)^{4}+\ldots\right)-R \\
& =R\left(1+x^{2} /(2 R)^{2}\right)-R \quad \text { (neglecting higher powers) } \\
O_{x} & =x^{2} / 2 R \quad \text { (approximate expression) }
\end{aligned}
$$

Angular method:

- Used when length of curve is large
- More accurate than the linear methods.
- Theodolite is used

The angular methods are:

1) Rankine method of tangential angles.

OR
One theodolite method
2) Two theodolite method.

1) Rankine method of tangential angles:

$>$ This method is based on the following geometry:

Qunkine's method of deflection angle This method is useful for setting out a cirdiscurve of long length and of large radius. It yields good results except when the ards are long as compared to the radius, so that the variation between the length of arc and its chord becomes considerable. It is quite accurate and is frequently used abighways and railways.
A deflection angle to any wint on the curve is the agle at P.C. between the mgent and the chord from PC. to that point. According Rankine's method, this eflection angle is equal to of the angle subtended by hearc at the centre.
In Fig. 11.14, T_{1} is the ${ }^{P} C ; a, b, c$, etc. are the points the curve; $\delta_{1}, \delta_{2}, \delta_{3}$, etc. te the respective deflection doles between the chords ad the respective tangents at li a, b, etc.; $\Delta_{1}, \Delta_{2}, \Delta_{3}$, etc. te the total deflection angles The points a, b, c, etc.

Fig. 11.14
surveine . The circle that the angle subtended by a chord at the centre is Give the angle between the tangen $, O, O=2 \times \angle T_{1} a=2 S_{1}$

Now

$$
\begin{aligned}
R T_{1} O a & =S_{1} a=C_{1} \\
R \times 2 \delta_{1} & =T_{1} \\
\delta_{1} & =\frac{C_{1}}{2 R} \text { radians }
\end{aligned}
$$

or
or

$$
\delta_{1}=\frac{C_{1}}{2 R} \times \frac{180^{\circ}}{\pi} \text { degrees }
$$

$$
=\frac{C_{1}}{2 R} \times \frac{180^{\circ}}{\pi} \times 60 \text { minutes }
$$

i.e.

$$
\delta_{1}=1718.9 \frac{C_{1}}{R} \text { minutes }
$$

Similarly,

$$
\delta_{2}=1718.9 \frac{C_{2}}{R} \text { minutes, } \delta_{3}=1718.9 \frac{C_{3}}{R} \text { minutes }
$$

For the first chord $T_{1} a$, the deflection angle Δ_{1} is its tangential angle δ_{1}. For the second point b on the curve, the deflection angle $\Delta_{2}=\angle I T_{1} b$.

Let the tangential angle for chord $a b=\delta_{2}$, i.e. the angle between the tangent at a and chord $a b$.

The angle subtended by the chord $a b$ at T_{1} is $\angle a T_{1} b=\delta_{2}$, so that

$$
\begin{aligned}
\Delta_{2} & =\angle I T_{1} b=\angle I T_{1} a+\angle a T_{1} b \\
& =\delta_{1}+\delta_{2}=\Delta_{1}+\delta_{2}
\end{aligned}
$$

Similarly, $\quad \angle b T_{1} c=\delta_{2}$, so that

$$
\Delta_{3}=\angle I T_{1} c=\angle I T_{1} b+\angle b T_{1} c
$$

$$
=\delta_{1}+\delta_{2}+\delta_{3}=\Delta_{2}+\delta_{3}
$$

and

$$
\begin{aligned}
\Delta_{n} & =\delta_{1}+\delta_{2}+\ldots+\delta_{n} \\
& =\Delta_{n}-1+\delta_{n}
\end{aligned}
$$

Last point of the curve is T_{2}, so that

$$
\Delta_{n}=\angle I T_{1} T_{2}=\frac{\Delta}{2}
$$

Check: Sum of all the individual deflection angles is equal to half the deflection angle of the circular curve.

- Here,

$$
\angle T_{1} O P_{1}=2 \times \angle B T_{1} P_{1}=2 \delta_{1}
$$

- Again,

Chord $T_{1} P_{1} \approx$ arc $T_{1} P_{1}$

- Now,

$$
\begin{array}{r}
\frac{\angle T_{1} O P_{1}}{l_{1}}=\frac{360^{\circ}}{2 \pi R} \\
\therefore 2 \delta_{1}=\frac{360^{\circ} \times l_{1}}{2 \pi R}
\end{array}
$$

- OR,

$$
\begin{aligned}
& \therefore \delta_{1}=\frac{360^{\circ} \times l_{1}}{2 \times 2 \pi R} \text { Degrees } \\
& \therefore \delta_{1}=\frac{360 \times 60 \times l_{1}}{2 \times 2 \pi R} \min s \\
& \therefore \delta_{1}=\frac{1718.9 \times l_{1}}{R} \min s
\end{aligned}
$$

- simillarly,

$$
\begin{aligned}
& \therefore \delta_{2}=\frac{1718.9 \times l_{2}}{R} \min s \\
& \therefore \delta_{3}=\frac{1718.9 \times l_{3}}{R} \min s
\end{aligned}
$$

> then,

$\delta_{\mathrm{n}}=\frac{1718.9 \times \ln }{R} \min$ R

$>$ when the degree of curve D is given,
$\therefore \delta_{1}=\frac{D \times l_{1}}{60}$ Degrees
$\therefore \delta_{2}=\frac{D \times l_{2}}{60}$ Degrees

- finally,

$$
\delta_{n}=\frac{D \times \ln }{60} \operatorname{deg}
$$

- Arithmetical check:

$$
\delta_{1}+\delta_{2}+\delta_{3}+\ldots . .+\delta_{n \equiv \Delta n \equiv \frac{\phi}{2}}^{\text {\# }}
$$

8. The sa

pheodolite method This yod is most convenient the ground is undulating, afand not suitable for linear ts. In this method, rements are comused on the principle that de between the unthord is equal to wanded by the chord posite segment.
 Thus, in Fig. 11.15,

Fig. 11.15 Two-theodolite method

$$
\angle I T_{1} a=\delta_{1}=\angle a T_{2} T_{1} \text { and } \angle I T_{1} b=\delta_{2}=\angle b T_{2} T_{1}
$$

Obstacles in setting out simple curves:

- Case -I -When P.I. is inaccessible
- Case -II -When P.C. is inaccessible
- Case -III -When P.T. is inaccessible
- Case -IV - When both P.C. and P.T. Is inaccessible.
- Case -V - When obstacles to chaining.

THANK

 YOU